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Figure 1: We analyze faces of different individuals to identify which facial parts constitute their most characteristic features. The process
of characterization also enables us to select a most characteristic portrait of an individual, out of a set. By leveraging these characteristic
portraits, we can synthesize an effective facial hybrid, which fuses together the characteristic facial parts of two different individuals.

Abstract
We present a method for determining which facial parts (mouth, nose, etc.) best characterize an individual, given a set of that
individual’s portraits. We introduce a novel distinctiveness analysis of a set of portraits, which leverages the deep features
extracted by a pre-trained face recognition CNN and a hair segmentation FCN, in the context of a weakly supervised metric
learning scheme. Our analysis enables the generation of a polarized class activation map (PCAM) for an individual’s portrait
via a transformation that localizes and amplifies the discriminative regions of the deep feature maps extracted by the aforemen-
tioned networks. A user study that we conducted shows that there is a surprisingly good agreement between the face parts that
users indicate as characteristic and the face parts automatically selected by our method. We demonstrate a few applications of
our method, including determining the most and the least representative portraits among a set of portraits of an individual, and
the creation of facial hybrids: portraits that combine the characteristic recognizable facial features of two individuals. Our face
characterization analysis is also effective for ranking portraits in order to find an individual’s look-alikes (Doppelgängers).

Keywords: facial hybrids, face recognition, feature polarization, neural networks
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1. Introduction

Face recognition is an intricate cognitive process that humans ex-
cel at, with entire areas in the human brain dedicated to this task.
Studies show that face recognition can take place in a holistic fash-

ion, from just a quick glance [TF93]; but the perceived identity of a
face is also strongly affected by a more cognitive processing of spe-
cific facial features, such as lip thickness, eye shape, etc. [AY16].
This is particularly true when the faces are well familiar to the ob-
server [JE09].
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In this paper, we address the intriguing task of face characteriza-
tion: identifying which facial parts of a particular individual con-
stitute his/her most characteristic, distinctive and recognizable fea-
tures. To the best of our knowledge, so far this task has only been
addressed using classical methods, e.g., [ZLO10], while in the cur-
rent work we seek to identify such parts by using deep neural net-
works, in conjunction with weakly supervised metric learning, to
analyze a set of portraits of an individual of interest.

In recent years it has become apparent that deep neural networks
are extremely successful in performing a wide variety of vision
tasks, and, in particular, have surpassed human performance in face
recognition [TYRW14]. Furthermore, recent studies in cognitive
neuroscience [AY17] show that there is a strong correlation be-
tween facial features that human observers find perceptually sensi-
tive and the features that CNNs rely on for the task of face recogni-
tion. These findings suggest that by tapping into the hidden layers,
and making use of the deep features extracted by networks trained
for face recognition, it is possible to determine the characteristic
facial parts of an individual.

Specifically, one can leverage a network trained for face recogni-
tion, to extract Class Activation Maps (CAMs), using the technique
proposed by Zhou et al. [ZKL∗16]. CAMs highlight the image re-
gions which most strongly contributed to the recognition task; how-
ever, they are not stable in the sense that they do not provide suffi-
ciently consistent and localized activations. Moreover, Zhou et al.
demonstrate that CAMs may be used for segmenting a recognized
object in its entirety, since they tend to indicate most of the object
as active. Thus, they are not well suited for our task of localizing
only certain parts of the face.

To overcome these difficulties, we affix the network with an addi-
tional distinctiveness analysis layer that helps us detect and better
localize the characteristic facial regions of individuals. This layer is
trained in a weakly supervised manner, using two sets of portraits.
In effect, this new layer localizes and amplifies the discriminative
parts of the feature maps of analyzed portraits in the first set, when
they are considered against the portraits in the second set, while at-
tenuating the other regions. Since the resulting modified activation
maps typically exhibit a polar nature, in the sense that face parts are
either attenuated or not, we name them Polarized CAMs (PCAMs).

We quantitatively compare PCAMs with CAMs by defining mea-
sures which show that CAMs are not effective for our purpose,
since they often indicate the same facial regions as active for both
sets of portraits, and the active regions are not consistent across dif-
ferent images of the same individual. We also report the results of a
user study that we conducted, showing that the facial parts selected
by our method largely agree with selections made by the partici-
pants of our study.

We demonstrate a number of applications for which our face char-
acterization analysis is useful.

By analyzing a set of portraits of a certain individual versus a set
consisting of a mixture of many other individuals, we are able to
identify the most and the least representative portraits of that indi-
vidual.

Another fascinating application is the creation of facial hybrids.

(a) (b) (c)

Figure 2: Three examples of GesichterMix’s facial hybrids: (a) Tom
Cruze and John Travolta, (b) Sean Penn and Leonardo Di-Caprio,
and (c) Vladimir Putin and Barack Obama.

There are artists, e.g., the German Instagram artist GesichterMix
[Ges17] and the Norwegian artist ThatNordicGuy [Tha18], who
create striking facial hybrids of various pairs of celebrities by
meticulously combining their most characteristic and distinctive
face parts into a single portrait (see Figure 2 for a few examples).
Inspired by their work, we employ our distinctiveness analysis for
automatically creating such hybrids. More specifically, by analyz-
ing two sets of celebrity portraits we are able to determine, given
two specific portraits, which regions from each portrait should be
fused together to form an effective facial hybrid.

Doppelgänger is a term from the German language referring to a
look-alike or double of a living person (occasionally with some
interesting paranormal connotations). The Doppelgänger Week,
which occurs during the first week of February, involves search-
ing for your own look-alike and sharing it. However, searching for
one’s Doppelgänger is not a simple task to automate, since one
must take into account the variations in pose, illumination and var-
ious in-the-wild differences between portraits, which must be over-
come. We show that face characterization analysis of an individual
also improves the ability to find his/her Doppelgängers. Specifi-
cally, given a query image of an individual, whom we have ana-
lyzed using our method, we use the most distinctive facial features
in order to define a more effective metric for comparing identities.
Given a set of portraits of other individuals, our metric is then used
to rank them according to their similarity to the queried individual.

The rest of this paper is organized as follows: We present back-
ground and related work in Section 2. In Sections 3 and 4 we
present our algorithm with emphasis on our main contribution. Ex-
perimental results of our method are reported in Section 5; Section
6 demonstrates the aforementioned applications of our face char-
acterization. Finally, Section 7 presents conclusions and discusses
future research directions.

2. Related Work

Machine analysis and recognition of faces has been an active re-
search area since the early 1990s [CWS95], with face detection
probably being the most studied problem [HL01]. With the recent
rise of neural networks, many face analysis tasks that were pre-
viously solved in various ad hoc manners are now solved within
the same framework. Benchmarks of inference tasks such as face
recognition, verification, expression and action analysis, facial
landmarks, face-based age, gender and race estimation, and more,
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have been increasingly pushed to the limits (and often exceeded
those) of human performance [DTM14, TYRW14].

With the increase in data availability, algorithms which leverage
the existence of sets of portraits have emerged, ranging from re-
constructing 3D face models from large unstructured photo collec-
tions [KSS11], to computing optical flow between pairs of portraits
[KSS12], and even reconstruction of a controllable model capturing
a persona from a large photo collection [SSKS15]. Finally, a fair
amount of effort has been directed towards synthesis challenges.
Tasks such as face synthesis, face swapping, [NMaTa∗17,BKD∗08]
and even turning static single still portraits into vivid facial anima-
tions [AECOKC17] are currently active areas of research.

In this work, our goal is to analyze a set of portraits of a given in-
dividual in order to automatically identify his/her most characteris-
tic facial parts. Psychological studies [MLGM02,TAAMA11] sup-
port the hypothesis that the human visual system analyzes faces by
quickly building holistic representations to extract useful second-
order information provided by the variation between the faces of
different individuals. In their review, Maurer et al. [MLGM02] con-
clude that there are three stages of processing associated with face
recognition. The first is face detection (based on first-order infor-
mation). The second is a holistic processing (the integration of fa-
cial features following detection), and finally, the third is face dis-
crimination (based on second-order information extracted from the
holistic representation).

From this perspective, the recognition process first attempts to rec-
ognize a face at once. A second attempt, relying only on individual
face parts, kicks in only after the first, holistic attempt has failed.
The ability to recognize faces using only parts of a face, serves
as motivation to formalizing the characterization problem. Further
motivation for our work is provided by a previous study by Abu-
darham and Yovel [AY17], which compared CNNs and humans
showing that there is a strong correlation between facial features
that humans consider perceptually sensitive and the features that
CNNs rely on when performing face recognition.

3. Face Characterization: Overview

The goal of this work is to determine which face parts character-
ize an individual. The main insight of our approach is that we can
infer this via a weakly supervised analysis of the activations of a
pretrained neural network. This question is difficult to answer from
just one pair of images, but, as we shall see, it can be answered
robustly given two sets of portraits, one for the individual being
characterized and another for arbitrary faces other than those of the
individual. We denote these two sets as Pind and Parb respectively.

We build upon the method of Zhou et al. [ZKL∗16] who proposed
a procedure for generating Class Activation Maps (CAMs) that in-
dicate the discriminative image regions used by a CNN to iden-
tify specific categories. However, as we demonstrate in Section 4,
CAMs are not effective for our purpose. Hence, we apply metric
learning with an implicit requirement of polarity between activa-
tion maps of different individuals. Informally, we seek a metric that
would minimize the distance between the deep features of the indi-
vidual of interest, while maximizing their distance to the features of

the other individuals. Using the learned metric, we are able to gen-
erate Polarized CAMs (PCAMs) from the transformed deep feature
maps.

A drawback of employing off-the-shelf face recognition CNNs for
face characterization is that they are insensitive to hair, although
hair is well known to be a rather characteristic trait [BHK97,
SBOR05]. In order to take hair into account, we train a Fully Con-
volutional network (FCN) to perform hair segmentation, and apply
metric learning on its features as well. Both of the learned metrics
(for the internal face parts and for hair) are then used to perform
the face characterization.

Finally, having obtained the activation polarizing metrics for a par-
ticular individual, we analyze the entire set of his/her portraits to
select a single, most representative, portrait. We then determine
the individual’s most characteristic face parts by comparing the
PCAMs of the representative portrait to those of a set of portraits of
other arbitrary individuals fromParb. The entire process is depicted
in Figure 5, and explained in more detail in the next section.

4. Characterization Analysis

In order to determine the characteristic facial parts we use deep
features extracted by a pre-trained face recognition CNN, in our
case VGG-Face [PVZ15]. Our analysis requires the portrait sets
Pind andParb, to first be aligned to the same canonical pose. We use
the method of Zhu and Ramanan [ZR12] for joint face detection,
pose estimation, and landmark estimation. Once the landmarks are
extracted, we align the portrait sets with an affine transformation
between the landmarks detected for each portrait and those of our
target canonical face. We denote the cropped and aligned portrait
sets with PA

ind and PA
arb. We denote a single aligned portrait from

these sets by PA
ind and PA

arb.

4.1. Class Activation Maps

Zhou at al. [ZKL∗16] proposed a procedure for generating Class
Activation Maps (CAMs) that indicate the discriminative image re-
gions used by a CNN to identify specific categories. Their method
consists of replacing the penultimate fully connected CNN layers
with a Global Average Pooling (GAP) layer, followed by a fully-
connected softmax layer, which is retrained for the classes at hand.

Formally, let us denote the CNN’s feature map before the GAP
layer by f∈ RZ×W×H , where Z is the number of feature channels,
and W and H are the width and height of the map. The GAP layer
computes a global spatial average for each of the Z channels:

Fz =
1

WH ∑
w,h

fz,w,h (1)

The resulting vector of global averages F = [F1, . . . ,FZ ] is fed into
the final fully connected layer, trained to infer the appropriate class
c. In other words, the final layer’s output, softmax(AF), is a vector
of class probabilities, where A is a matrix A ∈ RC×Z . The CAM
for class c is a two dimensional map depicting the active regions,
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input CAM PCAM input CAM PCAM

Figure 3: Class Activation Maps (middle columns) vs. our Polar-
ized Class Activation Maps (right columns) for extracting activa-
tion maps, applied on portraits. The CAMs seem to spread to wide
regions serving the face recognition process while the PCAMs se-
lect only the characteristic face part.

computed as a linear combination of the feature channels, each
weighted by Ac,z, denoting the (c,z) entry of A:

CAMc(w,h) = ∑
z

Ac,z fz,w,h. (2)

4.2. Polarized Class Activation Maps

Figure 3 shows the CAMs computed as described above for the sets
PA

ind (portraits of Benicio Del Toro) and PA
arb (portraits of other

random individuals). We configured the final classification layer to
classify between these two classes. The figure shows four pairs of
portraits (each pair consists of one portrait from PA

ind and another
portrait from PA

arb). The corresponding CAMs appear next to the
portraits in the 2nd and 5th columns.

These four pairs of portraits demonstrate that one cannot rely on
CAMs to indicate which face parts of an individual are character-
istic by examining the spatial distribution of the activation values
or by comparing their magnitudes. First, the active regions are not
consistent across different portraits of the same individual: in some
of his portraits Del Toro’s eye region is highly activated, but in
others it is not. Second, there are significant overlaps between the
CAMs of Del Toro’s portraits and those of the other individuals.
Thus, Del Toro’s characteristic face parts cannot be easily deter-
mined by comparing his CAM values to those of others.

We believe that this unstable and inconsistent behavior of CAMs
is a consequence of training the fully connected classification layer
using a standard softmax loss, which does not encourage the ac-
tivations of the two portraits to be mutually exclusive. Rather, the
softmax loss achieves facial recognition by taking into account the
combined appearance of all of the face parts. Hence, CAMs of faces

are likely to overlap. Our objective, on the other hand, is to mini-
mize the overlap between the two activation maps, so that an active
region in PA

ind is unlikely to be active in PA
arb. At the same time,

however, we wish to preserve the ability to discriminate between
the two portraits, correctly determining whether a portrait belongs
toPA

ind orPA
arb. In other words, we cannot simply attenuate the acti-

vations of portraits from PA
arb completely. Our goal is then to select

the most distinctive activations for the portraits from PA
ind while at-

tenuating the less distinctive ones and letting them remain active
for portraits from PA

arb.

To achieve this goal, we propose a scheme that applies Metric
Learning to the deep feature maps f . Specifically, by learning a
Mahalanobis distance between pairs of feature maps ( f i, f j),

d2
M( f i, f j) =

∥∥∥M f i−M f j
∥∥∥2

2
, (3)

where M ∈ R2×Z×W×H , we construct a linear embedding of the
deep features maps, such that the intra-class distances are mini-
mized, while the inter-class distances are maximized. Note that M
and f are reshaped into a matrix and a vector, such that their multi-
plication is well defined.

Using M we redefine the GAP values from Eq. (1) as:

Fc,z =
1

WH ∑
w,h

Mc,z,w,h � fz,w,h, (4)

where � denotes elementwise multiplication. In other words, we
obtain two global average values for each channel of the feature
map, representing the relative contribution of this channel to the
classification of the portrait as belonging to PA

ind or PA
arb.

Finally, given an image, its PCAM is obtained by elementwise mul-
tiplication of the feature channels with the learned weights, and
their weighted summation using the modified GAP values:

PCAMc(w,h) = ∑
z

Fc,z
(
Mc,z,w,h� fz,w,h

)
. (5)

Figure 3 shows the PCAMs, obtained as described above, in the 3rd
and 6th columns. Note that for each pair of portraits, the overlap
between the active regions in the corresponding PCAMs has been
reduced. Moreover, Del Toro’s eye region is now consistently indi-
cated as active, and for each of the portraits from PA

arb, the PCAM
activations over the eye regions are attenuated, which helps deter-
mine that the eye region is characteristic for Del Toro. In contrast,
Del Toro’s mouth region is consistently attenuated in his PCAMs,
indicating that it is not one of his characteristic parts. We quantita-
tively compare the overlap and consistency of CAMs vs. PCAMs
on a larger set of individuals in Section 5.

4.3. Metric Learning

We employ weakly-supervised metric learning to obtain M. Specif-
ically, given two sets of feature maps (for PA

ind and for PA
arb),

we learn M by maximizing the classification margin via a hinge
loss [SPVZ13]:

(M,b) = argmin
M,b

∑
i, j

max
{

r−ρi j

(
b−d2

M( f i, f j)
)
,0
}
, (6)
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Figure 4: Results of our weakly supervised polarizing metric learn-
ing. Weights are grouped in pairs in order to depict the polar nature
of the metric. In the right part, we zoom into specific pairs, showing
the polar nature of the metric. Structured patterns, resembling face
parts tend to emerge.

where b is the mean distance of all face features, and r specifies the
classification margin with respect to b, such that the classification
margin between positive and negative feature pairs is 2r. A pair
is positive when f i and f j are from portraits of the same set, and
negative otherwise. The labels ρi j = 1 and ρi j = −1 denote the
positive and negative pairs, respectively.

Eq. (6) is solved using stochastic gradient descent, where at each
iteration t a positive or a negative pair is randomly drawn from the
two training sets. The updates for M and b are given by

Mt+1 =

{
Mt ,ρi j

(
bt − ( f i− f j)T MT

t Mt( f i− f j)
)
> r

Mt − γMρi jMt( f i− f j)( f i− f j)T , otherwise
(7)

bt+1 =

{
bt , ρi j

(
bt − ( f i− f j)T MT

t Mt( f i− f j)
)
> r

bt + γbρi jbt , otherwise
(8)

where γM and γb are hyper parameters controlling the learning rate.

We observe that by optimizing the max margin loss in Eq. (6), we
are able to get a more consistent set of activations which tend to
overlap less. In Figure 4 we visualize the two rows of the learned
metric M, denoted as Mind and Marb, by reshaping each row to 512
weight maps, each corresponding to one of the 512 feature channels
of f . We show the entire learned metric in the left part of the figure,
and zoom on the right into eight pairs of weight maps. It is easy to
see that structure appears in the learned metric, and that the pairs of
weight maps tend to have inverse polarity. In other words, a region
attenuated in one map is typically amplified in its counterpart.

4.4. Hair Distinctiveness

It is well known that hair is a facial feature that frequently changes
in different portraits and that (partly) due to this reason face classi-
fication tasks (e.g., face detection or recognition) have been trained
after cropping out the hair [TKB12]. VGG-Face [SZ14], for exam-
ple, requires aligning the input portrait to a canonical pose which
excludes hair. In order to enable our method to determine whether
an individual’s hair is characteristic, we seek to train a NN on a
task which imposes activations on hair. We achieve this by training
a Fully Convolutional Network (FCN) on the task of hair segmenta-
tion, following the architecture of Long et al. [LSD15]. We trained
our network on the Figaro-1K dataset [MSLB18] which consists of
unconstrained images containing various hair textures and styles,
with manually labeled binary masks indicating hair pixels.

Armed with the pretrained hair segemtation network, we apply the
exact same metric learning procedure as described in the previous
sections, on the hair-sensitive feature. We denote the hair-sensitive
metric by MH and its first and second rows by MH

ind and MH
arb,

respectively.

4.5. Face Part Selection

Given M and MH , we can finally determine an individual’s charac-
teristic face parts. We first select the most representative portrait of
the individual from PA

ind by searching for the portrait whose deep
feature map is altered the least after weighing it by the learned met-
rics. Put formally,

krep = argmin
k

{∥∥∥Mind f k
ind− f k

ind

∥∥∥+ν

∥∥∥MH
ind f H,k

ind − f H,k
ind

∥∥∥}. (9)

We denote the features provided by feeding a portrait from PA
ind

into VGG-Face and our hair segmentation FCN by f k
ind and f H,k

ind
respectively. Similarly, by searching for the maximum instead of
a minimum, we may determine the individual’s least representa-
tive portrait. The hyper parameter ν enables balancing between the
magnitudes of the face and hair activation values.

Once we select the most representative aligned
portrait, which we denote by PA

krep
∈ PA

ind , we
determine its characteristic face parts by com-
paring the PCAM values inside each face part
to those of the portraits of other individuals in
PA

arb. In other words, a face part of PA
krep

is de-
termined as characteristic if its total PCAM ac-
tivation is stronger than that in the majority of portraits from PA

arb.
Hence, each comparison requires segmenting the face part in order
to sum the activations across the containing segment. All of the face
parts other than the hair are segmented by using facial landmarks,
with the method proposed by [ZR12], while the hair is segmented
using our own hair segmentation FCN from Section 4.4. These face
parts are shown in yellow in the inset. The entire process is depicted
in Figure 5.

5. Results and Evaluation

Our entire pipeline was implemented in Matlab with the process
of Metric Learning requiring about 15 minutes per individual (for
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Figure 5: Our face characterization pipeline begins by aligning two sets of portraits, followed by feature extraction using a face recognition
CNN and a hair segmentation FCN. Metric learning is applied on the features, enabling determining the most representative portrait of the
analyzed individual. Given the latter portrait, we compare its PCAM to the PCAMs of portraits in PA

arb. We segment each portrait and detect
the individual’s characteristic face parts by comparing the total PCAM activation across each segment.

acquiring both M and MH ). Note that using a CAM involves train-
ing only a single penultimate layer, which is faster and converges
within less than a minute. However, at test time, the run-time of
both methods is dominated by the forward pass of the entire CNN.

We summarize certain technical details and choices which are cru-
cial for reproducing the results that follow, in the supplementary
material. We plan to make our full implementation and data avail-
able upon publication of this work.

5.1. PCAM vs. CAM face characterization

In Section 4.2, we argued that CAMs are ill-suited for face char-
acterization due to their tendency to overlap and their inconsis-
tency. In order to quantify the measure of overlap, we normal-
ize the PCAM and CAM activation maps and binarize them by
thresholding their values at 0.1. As a measure of overlap, we calcu-
late the Jaccard index, also known as the Intersection over Union,
J(A,B) = 100 |A∩B|

|A∪B| for random pairs of portraits (A,B), where
A ∈ Pind and B ∈ Parb.

In Figure 6, we plot the distribution of Jaccard indices for four in-
dividuals under characterization. In the upper left subplot of each
quartile, we show that the Jaccard indices for PCAM pairs are typi-
cally smaller than those of CAM pairs. We can also see that the dis-
tribution modes (denoted by µ) are significantly smaller for PCAM
pairs, indicating their lower tendency to overlap.

In order to quantify the increased consistency of face characteri-
zation of PCAMs vs. CAM, we assign each one of the possible
selections a number between 1 and 16. There are 16 options since
for this comparison, we use 4 parts (nose, mouth, eyes and eye-
brows). Note that in this analysis we do not consider hair, hence
reproducing the exact same method as proposed by [ZKL∗16]. For
each pair of portraits, one from Pind and the other from Parb, we
record the number of the selection produced using CAMs and us-
ing PCAMs. The histograms of these selections, shown in the top
right subplot of each quartile in Figure 6, show that PCAMs have
a higher probability of yielding the same selection. For example,

Figure 6: PCAM vs. CAM: The top left subplots within each quar-
tile depict the distribution of Jaccard indices, which for PCAM
(green) exhibit lower values than those of CAM (red), indicating
a smaller tendency of activations to overlap. The top right subplots
present the histogram of face part selections, which demonstrate
that PCAM produces a distribution with a higher mode. The bot-
tom subplots show portraits with PCAM (upper heat map pair) and
CAM (bottom heat map pair) overlays respectively. Again, it is ap-
parent that PCAMs are more concentrated and overlap less, com-
pared with CAMs.
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for Woody Allen, the PCAM and CAM modes are found to consist
of 51% of the selections and 19% of the selections respectively.
This difference demonstrates the significantly more stable nature
of PCAM based selections.
We also show an example of the PCAM vs. CAM based activations
in the bottom subplot of each quartile. In all four examples, CAM
activations are more spread, while PCAM activations are more con-
centrated. More such results are presented in the supplementary
material.

5.2. User Study

In order to quantitatively evaluate our PCAM-based part selection
strategy, we conducted a user study where users were requested to
indicate the characteristic face parts for different individuals. For
each individual, the participants were shown a gallery of six ran-
domly chosen portraits of that individual, and were asked to indi-
cate all of the parts that they judged to be characteristic, choosing
from Hair, Eyes/Eyeglasses, Eyebrows, Nose, and Mouth. The par-
ticipants were asked to indicate as many parts as they felt appropri-
ate, or none, for each individual. We collected a total of 4000 such
characterizations for 20 individuals (10 males and 10 females),
from 200 participants. Volunteers were recruited through social me-
dia posts and were able to answer the study only on a desktop (and
not on a mobile phone).

The user study participants are shown six portraits per individual.
We selected 10 out of the 20 individuals randomly from the Face-
Scrub dataset [NW14], while the remaining 10 individuals were
chosen from the WebCaricature dataset [HLS∗17]. We assume that
the prior familiarity of the study participants with the celebrities
compensates for the small size of the gallery of presented images
for those individuals.

For each individual in our study, we record and report two types
of results, corresponding to joint and independent face part selec-
tion. The first type assumes that users select the most characteristic
face parts in a joint, inter-dependent manner. Since users are re-
quested to select the characteristic face parts out of 5 options (Hair,
Eyes/Eyeglasses, Eyebrows, Nose and Mouth), there are 25 possi-
ble selections, and we record the most frequent one. The second
type assumes that users select each face part independently, disre-
garding the other face part selections. In this case, we record the
face parts that were indicated as characteristic by the majority of
the users (more than 50%). In either case, the result for each indi-
vidual may be represented as a binary vector of length 5.

In order to compare the selections predicted by our method to those
made by the users, we calculate and report the Hamming distances
between the selection vector produced by our method and the two
types of vectors representing the users’ selections described above,
for each individual. Note that the Hamming distance measures the
disagreement between our method and the selections made by hu-
mans, accounting both for parts that were indicated as characteristic
and for those that were not.

As another measure, we also fit a probability mass function to the
selections of the users for each of the 20 individuals. We use it to
measure the likelihood of our PCAM-based part selections and re-
port the ratio between the resulting likelihood and a naïve guess.

We model the joint face part selection with a generalized Bernoulli
distribution (also known as Multinoulli) with a random variable
ranging between 1 and 25. For the independent face part selection,
we fit an independent Bernoulli distribution for each face part. We
note that without any prior knowledge, the likelihood of a random
guess is 1/25 = 0.03125.

Table 1 reports the selection made by our method for each of the
20 individuals, along with the joint and the independent selections
made by the users, accompanied by the Hamming distances (de-
noted by ∆) and likelihood ratios (denoted by ρ) mentioned above.
We denote the face parts by H, E, B, N and M, standing for Hair,
Eyes, Eyebrows, Nose and Mouth, respectively. The results indi-
cate a strong agreement between our method and the study partic-
ipants. Most of the Hamming distances between the selections of
our method and the most common joint and independent user se-
lections are either 0 (full agreement) or 0.2 (agreement on 4 out of
5 parts). We stress that this holds across male and female faces. In
addition, for 17 out of the 20 individuals, ρ > 1, meaning that we
improved upon a naïve guess, while for 11 of the individuals, we
improve upon a naïve guess by a factor of three or more.

Averages of the Hamming distances and the likelihood ratios are
reported in Table 5.2. Note that on average, our method improves
upon a random guess almost by a factor of 4.

It is interesting to examine the cases for which ρ < 1. This seems to
occur when there’s a good consensus among the study participants
on a selection that differs from our method’s. For example, 91% of
the users agree that Melina Kanakaredes’s (bottom left in Table 1)
eyebrows are not characteristic, in contrast to our algorithm.

In general, we observe that users tend to select fewer face parts
as characteristic, compared to our method. The overall percent of
users who selected more than 2 characteristic face parts for an indi-
vidual, stands on 14%, while our algorithm selected 3 or more char-
acteristic parts for 8 out of 20 (40%) individuals. This is a signifi-
cant difference, which obviously increases the Hamming distances
and reduces the likelihoods of our method’s selections. However,
in all but one case, our method’s selection is a strict superset of the
common selections of the users.

Another noticeable difference between human selections and our
algorithm is that, for the 20 individuals in the study, eyebrows were
never chosen as characteristic by the majority of the users. It should
be noted that eyebrows were also the least selected face part by our
method (in 6 out of 20 individuals).

For each of the 20 individuals, we also show the part-wise selection
consensus across users. For each face part, we show the percent-
age of the majority vote. Agreement on a characteristic face part
is shown as a magenta bar, while agreement on a non characteristic
one is shown as a cyan bar. For example, 95 percent of the users be-
lieved that Woody Allen’s (top left) eyebrows are not characteristic
and 90 percent indicated that Bob Marley’s (top right) hair is.

Through these percentages we see that users often disagree about
what characterizes face parts. However, in most cases, the selection
of our algorithm agrees with the selection of the majority of users.

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.



Sendik, Lischinski & Cohen-Or / What’s in a Face?

In
di

vi
du

al
sf

ro
m

W
eb

C
ar

ic
at

ur
e

Most
representative
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Joint E(∆=0,ρ=9.19) M(∆=0.2,ρ=4.59) E(∆=0.2,ρ=4.92) H,M(∆=0.2,ρ=1.29) H(∆=0.2,ρ=4.77)
Independent E(∆=0,ρ=8.54) M(∆=0.2,ρ=4.71) E(∆=0.2,ρ=4.35) H,M(∆=0.2,ρ=1.92) H(∆=0.2,ρ=5.96)

Selection
consensus

Most
representative
PCAM E,B H,E,B,M H,E,B,M H,E,B H,N,M
Joint E(∆=0.2,ρ=4.50) H,M(∆=0.4,ρ=1.67) H(∆=0.6,ρ=0.35) H,E(∆=0.2,ρ=0.18) M(∆=0.4,ρ=1.11)
Independent E(∆=0.2,ρ=4.76) H,M(∆=0.4,ρ=1.09) H,M(∆=0.4,ρ=0.85) H,E(∆=0.2,ρ=0.29) N,M(∆=0.2,ρ=1.44)

Selection
consensus
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Most
representative
PCAM N,M E N,M N,M E
Joint N,M (∆=0,ρ=8.70) E (∆=0,ρ=6.24) M (∆=0.2,ρ=4.45) M (∆=0.2,ρ=2.02) E (∆=0,ρ=11.40)
Independent N,M (∆=0,ρ=10.21) E (∆=0,ρ=4.33) M (∆=0.2,ρ=4.29) M (∆=0.2,ρ=2.44) E (∆=0,ρ=8.42)

Selection
consensus

Most
representative
PCAM H,E,B E,N N H,E,M H,E,M
Joint H(∆=0.4,ρ=0.72) N(∆=0.2,ρ=3.14) M(∆=0.4,ρ=3.16) H(∆=0.4,ρ=2.07) E(∆=0.4,ρ=3.36)
Independent H(∆=0.4,ρ=0.43) N(∆=0.2,ρ=3.43) M(∆=0.4,ρ=2.16) H(∆=0.4,ρ=2.75) E(∆=0.4,ρ=4.35)

Selection
consensus

Table 1: For each of the 20 individuals in the user study, we show the most representative portrait that was used by our method for selecting
characteristic face parts (indicated under each portrait), as well as the joint and independent user selections. In parentheses we report the
Hamming distances ∆ from our method’s selection, as well as the likelihood ratio ρ. Next we show the consensus of selections across users
per face part, with selected parts indicated in magenta.

Table 2: The
averages of
the joint and
independent
scores of our
user study.

Averages
WebCaricature FaceScrub All

Joint
∆=0.26
ρ=3.26

∆=0.22
ρ=4.53

∆=0.24
ρ=3.89

Independent
∆=0.22
ρ=3.39

∆=0.22
ρ=4.28

∆=0.22
ρ=3.84

6. Applications

6.1. Portrait ranking
Having trained the metrics M and MH , we leverage them for deter-
mining the most and least representative portraits of an individual,
by applying Eq. (9). Recall that Eq. (9) minimizes the norm of the
difference between the features, before and after the transformation
with the metric. Since the metric alters characteristic features, min-

imizing Eq. (9) amounts to searching for the portrait whose feature
map is altered the least by the learnt metric, which we consider to
be the most representative. Similarly, maximizing Eq. (9) amounts
to searching for the least representative portrait.

In Figure 7, we show such portrait pairs for nine individuals, and
suggest our explanations for the reason that the least representative
portrait was selected as such. We identify six possible reasons, as
mentioned in the caption.

While it is difficult to assess to what degree our approach indeed
selects the most representative portrait in a set, it is instructive to
examine the reasons for selecting the least representative portrait.
In many cases, our method determines a portrait as least represen-
tative when it is partially occluded, was taken in an extreme pose
or illumination, or even cases where the portrait is not a natural one
(e.g., a pencil drawing). In several cases where the set of portraits
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contained by mistake a portrait of another individual, our method
has correctly identified the outlier as the least representative por-
trait. Thus, our approach may be helpful for distilling datasets. We
present more such results in the supplementary material.

Cara Delevingne
(vi) A pencil drawing

Bill Cosby
(i)

Elijah Wood
(iv)

Geoffrey Rush
(vi) Individual is

in a costume

Owen Wilson
(v)

Pamela Sue Martin
(i or ii)

Robert Redford
(i and iv)

Victor Garber
(iii)

Oprah Winfrey
(v)

Figure 7: Most and least representative portraits for nine different
individuals, selected from nine corresponding portrait sets using
Eq. (9). In each pair, the most representative portrait appears on the
left. We identify six recurring reasons for the least representative
portrait selections as follows:
(i) The portrait depicts the individual at a younger or older age
(ii) The portrait depicts the individual in an extreme pose, illumi-
nation or colors
(iii) The portrait is of another individual (outlier in the set)
(iv) The face is partially occluded (beard, sunglasses, cigar)
(v) Unexplained failures of our ranking algorithm (cases where we
found the least representative portrait to resemble many of those in
Pind)
(vi) Other

6.2. Synthesizing facial hybrids

Overview. Our face characterization method may be used for au-
tomatic creation of facial hybrids, such as those produced by the
two artists GesichterMix and ThatNordicGuy. These hybrids are
created by combining together recognizable facial features of two
individuals. To ensure the recognizability of facial parts, they must
be composed together, similarly to the process of creating facial
composites by the police, rather than blended, as commonly done
in image morphing [GDCV98].

Our method can be used to determine which facial parts of each of
the two individuals should be selected for inclusion in the hybrid.
In order to increase recognizability, the parts selected from each in-
dividual should be as characteristic as possible, with respect to the
two individuals. Thus, rather than performing our face characteri-
zation on each of the two individuals separately (using the setsPind

and Parb), we characterize the two individuals with respect to each
other, using their two sets of portraits Pind1 and Pind2.

Having performed the pairwise face characterization analysis, we
automatically select a pair of aligned portraits PA

1 ∈PA
ind1 and PA

2 ∈
PA

ind2, which are segmented as described in Section 4.5.

Next, we compute PCAMs for each of the two aligned portraits.
Using the PCAMs, we determine for each portrait which of its
segments should be included in the hybrid, and proceed to fuse
them together using nonlinear spectral fusion [BMN∗17]. Below
we elaborate on the main steps.

Portrait selection. To create a visually plausible facial hybrid, the
two source portraits should be compatible in terms of their global
properties, such as pose and illumination. Rather than performing
precise recovery and matching of these properties, we automati-
cally select a pair of portraits where both the pose and the illumi-
nation are as frontal as possible. Needless to say, the automatic se-
lection of portraits is optional to our approach; the user can choose
to exercise artistic control and indicate which two portraits to use.

We compute the CNN features for three versions of each portrait in
the two sets: the original (aligned) image PA

i and two horizontally
reflected versions of it. The two versions are created by cropping
the left or the right half of the portrait and reflecting the remaining
half horizontally, yielding two symmetric images denoted by PL

i
and PR

i . We extract the deep features of these three images, which
we denote by f i, f i,L and f i,R. We choose one portrait from each
set, for which the maximal L2 distance between the features of the
original portrait and those of its two reflected versions is minimal.
More formally, we sort the images within each set according to

max
r∈{L,R}

∥∥∥ f i− f i,r
∥∥∥2

, (10)

and select the image with the smallest score. The benefit of select-
ing this most symmetric image by examining deep features, rather
than using the image directly is that we disregard the hair and wrin-
kles. We also found that this method effectively filters out portraits
with occluded facial regions. We demonstrate the effectiveness of
this simple approach in the supplementary material.

Segmentation. Each of the two selected portraits is segmented into
three types of components, (i) facial parts, (ii) face base and (iii) the
background, as illustrated in the inset previously. The facial parts
are the regions containing the eyes, eyebrows, nose, mouth and hair
(shown in yellow). The corresponding segments are obtained from
the detected facial landmarks and using our hair segmentation FCN.
The face base, shown in purple, contains the rest of the face, and is
segmented using the method of Nieuwenhuis and Cremers [NC13].
The background is defined as the remaining image regions (shown
in green), belonging to neither the face parts, nor to the base.

Segment selection. For each face part, we sum the PCAM activa-
tion across the relevant segment in both portraits, PA

1 and PA
2 , and

choose the one for which the total activation is higher. The base is
chosen in the same manner, while the background is selected from
the same portrait as the hair.

Figure 8 shows a few of our results. Note that both of the combined
individuals (shown in the two bottom corners of each image) may
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Figure 8: Results of our facial hybrid synthesis algorithm. The two small images within each sub-figure are the inputs. The large image within
each sub-figure is our resulting facial hybrid.

be recognized in the resulting facial hybrid. Additional hybrids are
included in the supplementary material.

6.3. Doppelgänger search

Face recognition approaches work best on aligned portraits, cap-
tured under controlled settings. Recognizing faces in-the-wild,
which may exhibit extreme pose, illumination, or expression varia-
tions, is much more challenging. Thus, searching for an individual’s
look-alikes, or Doppelgängers, in a set of portraits captured in-the-
wild, is a challenging task. Here, we demonstrate that by measuring
face similarity using our learned metrics the ability to find Doppel-
gängers is consistently and significantly improved.

Schroff et al. [STKB11] develop a face-similarity measure that is
largely invariant to differences in pose, illumination or expression.
We do not explicitly attempt to tackle such portrait variations, but
merely show that our metric improves robustness to such condi-
tions implicitly. We note that Schroff’s method relied on a relatively
large dataset, the CMU Multi-PIE database, which includes images
of 337 individuals in more than 2000 pose, lighting and illumina-
tion combinations, in order to achieve the desired robustness. Our
method, on the other hand, learns a metric from a sets of only ~100
images, and does not explicitly target pose or illumination invari-
ance.

To demonstrate the effectiveness of our approach for the task of
finding Doppelgängers, we searched for Doppelgänger images for
several celebrities on Google (using the search term “$individual$
DoppelGanger”, where the key $individual$ was replaced with the
individual’s name). For each target individual, we add the found
Doppelgänger portraits (between 1 to 5) to a set of randomly se-
lected 100 portraits of other individuals. We next sort the portraits
in the resulting set according to their similarity to the representative
portrait of the target individual. Ideally, such sorting should result
in the “true” Doppelgänger images ranked at the top. Similarity was

measured using our learned metric:∥∥∥Mind( f krep
ind − find)

∥∥∥+ν

∥∥∥MH
ind( f H,krep

ind − f H
ind)
∥∥∥ , (11)

where f krep and f H,krep are the features of the representative portrait
of the individual for which we are searching for a Doppelgänger.
As a performance baseline, we also sort the same set using a naıve
metric based on VGG-Face features:∥∥∥ f krep

ind − f k
ind

∥∥∥ . (12)

Table 2 shows the results of this experiment on 12 celebrities. It
may be seen that the ranking produced using our metric is con-
sistently (and often significantly) higher for the “planted” Doppel-
gänger images, compared to the baseline metric. In fact, in 11 out
of the 12 cases, one of the Doppelgänger images was ranked first
using our metric, compared to only 3 out of 12 using the baseline.

A useful property of our metric is that the sorted distances exhibit
a tendency to increase faster. We attribute this to our metric’s ex-
plicit sensitivity to the characteristic face parts. In Figure 9 we plot
the distances sorted by our metric (dashed) and the baseline met-
ric (solid), for four individuals. The distances are normalized by
the smallest distance in the set (of the portrait ranked first) in order
to plot both graphs on the same scale. It is noticeable that when
distances are computed using our metric, they increase faster.

7. Conclusions and limitations

We have presented a technique for characterizing an individual’s
face based on a small set of his/her portraits. The key component
of our approach is a weakly supervised metric learning scheme that
analyzes two sets of portraits. Our results reconfirm the connection
between the deep features a network uses for face recognition and
those used in human perception.

A limitation of our method is that it lacks the ability to report face
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Baseline
↓

Metric

Rep.
portrait

Our
metric

Baseline
metric

Baseline
↓

Metric

Rep.
portrait

Our
metric

Baseline
metric

Baseline
↓

Metric

Rep.
portrait

Our
metric

Baseline
metric

(36)
↓

(3)

(18,3,2)
↓

(5,3,1)

(50)
↓

(1)

(8)
↓

(1)

(7,4)
↓

(3,1)

(79,34,17,2)
↓

(4,3,1,2)

(25,15,14,2,1)
↓

(8,4,1,2,3)

(28,25,22)
↓

(8,4,1)

(72,47,7)
↓

(7,2,1)

(37,19)
↓

(3,1)

(20,9,1)
↓

(2,4,1)

(5,3,2,1)
↓

(4,3,2,1)

Table 2: Our metric in Eq. (11) results in higher rankings for the Doppelgängers present in a portrait set, compared to the baseline metric in
Eq. (12). Columns 1, 5, and 9 show the change in the ranking order of the Doppelgänger portraits when switching from the baseline metric
to ours. It may be seen that in nearly all cases, the ranking is improved and the Doppelgänger images are ranked higher (smaller indices)
when the set is sorted according to our metric. In each block of images, the left column shows the representative portrait of the individual for
whom Doppelgängers are sought, while the middle and right columns show the top ranked portrait in the set according to our metric and the
baseline metric, respectively.

characteristics which are geometrical, such as a the shape of one’s
face (e.g., oblong vs. square shaped faces). In the future, we find
applying our proposed metric learning setting on 3D face repre-
sentations as a promising direction for gaining sensitivity to facial
geometry. In addition, since our method relies on the presence of
activations, it lacks the ability to indicate that the absence of a face
part, such as baldness, is characteristic.

Another drawback of our method is that it relies on face segmenta-
tion, which we apply to enable comparing the activity of common
face parts. In future work, it would be interesting to bypass the need
for such segmentation and attempt to select characterizing regions
at a finer granularity. This would enable defining tiny face parts
such as moles (e.g., Marilyn Monroe’s mole) as characteristic.

In Figure 10 we show some examples where our method failed to
select face parts for creating an effective facial hybrid. These fail-
ure cases are caused by differences in face pose (as shown in the
leftmost hybrid), occlusions (as shown in the middle hybrid), and
face expressions (as shown in the rightmost result). Although our
method does not explicitly attempt to cope with such differences,
we believe that a more careful facial analysis should be able to re-
cover from such cases quite easily.

Observing numerous learned metrics, we notice that they seem to
capture rather similar structures (turning on or off certain face parts,
depending on the specific individual at hand). We feel that the dif-
ferences between metrics are mainly either small refinements for

Figure 9: Plots of sorted distances between a target portrait and
the portraits in the set containing the planted Doppelgängers.
When distances are computed using our metric they increase faster
(dashed line) compared to the distances computed using the base-
line metric (solid line).

Figure 10: Failures of our method, attributed to the inability to cope
with differences in face pose, occlusions or face expressions.
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better alignment of features, or affecting the decision to turn face
parts on or off. Assuming these differences are indeed typically
small, a promising research direction would be to try and apply
transfer learning for training these metrics. This will enable faster
analysis using much smaller sets of portraits, perhaps even from a
single portrait per individual. This, in turn, may support new ap-
plications, such as creating hybrids of two parents, as a means of
hallucinating a possible portrait of their potential child, or synthe-
sizing portraits of new siblings by analyzing the distinctive features
of two already born siblings.
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