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Abstract. We presentwavelet warping— a new class of forward 3D warping
algorithms for image-based rendering. In wavelet warping most of the warping
operation is performed in the wavelet domain, by operating on the coefficients
of the wavelet transforms of the images and other matrices defined by the map-
ping. Operating in this fashion is often more efficient than performing the 3D
warp in the standard manner. Perhaps more importantly, operating in the wavelet
domain allows one to perform the 3D warping operation progressively and to gen-
erate target views at multiple resolutions. We describe wavelet warping of planar,
cylindrical, and spherical reference images and demonstrate that the resulting al-
gorithms compare favorably to their standard counterparts. We also discuss and
demonstrate utilization of temporal coherence when wavelet-warping image se-
quences.

1 Introduction

Many image-based rendering algorithms use pre-rendered or pre-acquiredreference
imagesof a 3D scene in order to synthesize novel views of the scene. The central
computational component of such algorithms is 3D image warping, which performs the
mapping of pixels in the reference images to their coordinates in the target image.

This paper presentswavelet warping— a new class of forward 3D warping algo-
rithms for image-based rendering. We rewrite the 3D warping equations as a point-
wise quotient of linear combinations of matrices. Rather than computing these linear
combinations in a standard manner, we first pre-compute the wavelet transforms of the
participating matrices. Next, we perform the linear combination on the sparse wavelet
transform coefficients. Applying the inverse wavelet transform to the resulting coef-
ficients yields the desired linear combinations. Operating in the wavelet domain is
advantageous in several aspects:

Sparse representation:The wavelet decomposition of an image or a large matrix
is typically much sparser (has fewer non-zero coefficients) than the original direct rep-
resentation. This property has been utilized to speed up various numerical operations
[1, 2]. In our case, a sparse representation of the matrices results in faster computation
of their linear combinations since we operate only on the non-zero coefficients.

Multi-resolution and progressive computation:The wavelet decomposition repre-
sents each matrix at multiple scales. Such a representation makes it easy to perform
the warping operation at multiple resolutions, as well as in a progressive, coarse-to-fine
fashion.

Compatibility with emerging standards:Over the past decade the wavelet transform
has been recognized as a preferred tool for image and video compression and has been
selected as the fundamental building block of the emerging JPEG-2000 standard. Thus,
it is very likely that many of the images that we will be working with in the future will
be represented in the wavelet domain to begin with. Wavelet domain operations will
allow processing of such images without having to reconstruct them first.



1.1 Contributions

We describe in detail wavelet warping algorithms for three common types of 3D image
warps: planar-to-planar warp, cylindrical-to-planar warp, and spherical-to-planar warp.
Cylindrical and spherical panoramas and movies are becoming increasingly common
in application areas, such as entertainment, real estate, virtual tourism, and electronic
retail. Current viewers allow the user to interactively change the viewing direction,
e.g., [4, 9]. By using depth information, a 3D warper enables users to change theview-
ing position(center of projection), in addition to the viewing direction [13]. A fast 3D
warper enables users to view a scene interactively. We will show that the wavelet warp-
ing algorithm is at least as fast as the most efficient warping algorithm known to date
for planar and cylindrical warps, and is nearly twice as fast in the spherical case.

Perhaps more importantly, our wavelet warping algorithms support multi-resolution
and progressive rendering. For example, consider an object whose image-based model
consists of one or more high-resolution reference images. The high resolution may be
necessary for a close-up view of the object, but for most views of a 3D scene containing
the object a much lower resolution suffices. Our approach makes it possible to perform
the warp at the appropriate coarser resolution, without unnecessarily warping each and
every pixel in the reference images. Multi-resolution warping can also be achieved
within a standard warping framework by using an over-complete pyramid-based image
representation (e.g. a quadtree), but at a cost of increasing the size of the representation.
In addition, wavelet warping has the advantage that the computation is progressive: a
low resolution result can be progressively refined without redundant computations.

Our final contribution is a new algorithm for 3D warping an entire sequence of
images with depth to a novel view. This algorithm is also based on wavelet warping, and
it utilizes the temporal coherence typically present in image sequences or panoramic
movies to achieve considerable speedups over frame-by-frame warping.

1.2 Related work

The idea of representing a scene as a set of reference images was introduced to computer
graphics by Chen and Williams [5] and by McMillan and Bishop [13]. The equations
of 3D warping are developed in detail in McMillan’s PhD thesis [12]. Market al. [11]
and Shadeet al.[14] discuss different frameworks for image-based rendering and warp-
ing. Dally et al. [6] introduce the delta tree, a data structure that represents an object
using a collection of images. They divide images into blocks and represent them in the
frequency domain using the discrete cosine transform (DCT), but provide little detail
regarding the warping of such images.

Smith and Rowe [15] address the issue of processing JPEG-compressed images in
the compressed DCT domain. By performing pixel-wise and scalar addition and mul-
tiplication on JPEG-compressed images they are able to implement operations such as
dissolving between two video sequences and video subtitling very efficiently (compared
to uncompressing, processing, and compressing again). In a later paper [16] their meth-
ods are extended to the computation of arbitrary linear combinations of pixels in images
of motion-JPEG video sequences. However, they do not address 3D warping of images
and video sequences.

Their approach is tuned to the particularities of JPEG (block-based DCT, quan-
tization, zig-zag scanning, etc.). The resulting algorithms are quite complicated. In
contrast, our approach is applicable to any wavelet transform (although its effectiveness
will depend on which transform is actually chosen), and results in very simple algo-
rithms. Another difference between their approach and this work is in the goals. Their



primary goal is to process compressed images (or video sequences) directly, without
ever leaving the compressed domain. Our primary goal is to provide faster and more
flexible operations on ordinary data, by representing the data and/or the operation in
the wavelet domain. Our approach is geared towards an interactive setting, where oper-
ations are performed in the wavelet domain, but the results are typically reconstructed
right away for display.

2 Wavelets

Wavelets are a powerful mathematical tool for hierarchical multi-resolution analysis of
functions. They have been effectively utilized in many diverse fields, including ap-
proximation theory, signal processing, physics, astronomy, and image processing [10].
Wavelets have also been applied to a wide variety of problems in computer graphics
[17]. In this section we briefly review wavelet-related terminology and concepts that
will be used later in the paper.

Lifting: The lifting scheme [18] is a method for constructing wavelets in the spatial
domain. It consists of three steps: (i) splitting the data into two subsets; (ii) computing
the wavelet coefficients as the failure to predict one subset based on the other (high
pass); (iii) computing the scaling function coefficients by updating the remaining subset
(low pass).

Any discrete wavelet transform can be factored into lifting steps [7], thus allowing:
(i) in-place computation of the wavelet transform; (ii) faster computation, asymptoti-
cally reducing the complexity by a factor of two; (iii) construction of wavelet transforms
that map integers to integers [3].

Integer wavelets:Integer wavelet transforms operate on integer valued signals to
produce integer valued wavelet coefficients. Such transforms have been effectively used
for lossless compression of images [3]. Calderbanket al. [3] describe invertible integer
wavelet transforms, but use floating point arithmetic to compute them. In our imple-
mentation, the integer transforms are computed using integer arithmetic, with addition,
subtraction and shift operations only.

2D transforms: The 2D wavelet transform of a matrix or an image can be con-
structed using the 1D wavelet transform in two ways: thestandard decompositionand
thenonstandard decomposition. The nonstandard decomposition is computed by apply-
ing the 1D transform alternating between rows and columns of the matrix. In this paper
we use both the 1D wavelet transform and the 2D non-standard wavelet transform.

Linear combinations of matrices

Our approach is based on fast computation of linear combinations of matrices in the
wavelet domain. LetA be a 2D matrix that can be expressed as a linear combination of
matrices:A =

P
i �i A i , and letT be a 2D wavelet transform. SinceT is an invertible

linear operator, we can expressA as

A = T�1 (T (A)) = T�1

 X
i

�iT (A i)

!
. (1)

In other words,A can be computed in the wavelet domain, by precomputing the wavelet
transform (decomposition) of each matrixA i , linearly combining the resulting wavelet
coefficients, and applying the inverse transform (reconstruction). If the wavelet decom-



positionsT (A i) are sparse, this computation can be done rapidly by operating only on
the non-zero coefficients of each transform.

3 3D Warping

This section describes the application of our approach to the various 3D warping map-
pings, which are in the core of most image-based rendering algorithms. We begin by
briefly reviewing the 3D warping equations (the reader is referred to McMillan’s PhD
thesis [12] for detailed derivations). Following the review we show how to express
(parts of) the warping operation as a linear combination of matrices, thereby paving the
way forwavelet domain 3D warping.

Most image-based rendering algorithms useforward 3D warping, which maps pix-
els from a reference (source) image to the desired (target) image, according to the fol-
lowing general equation [12]:

p2 = M�1
2

�
Æ
�
p1

�
(o1 � o2) + M 1

�
p1

��
.

The 3-vectorsp1 andp2 are the homogeneous image coordinates of the source and target
pixels, respectively. The matricesM i map pixel coordinates to 3D rays, and the points
oi are the centers of projection. The generalized disparityÆ(p) is inversely proportional
to the depth at pixelp.

More specifically, the forward mapping from reference image space coordinates
(x, y) to target image space coordinates (u, v) is expressed as

u =
f1(x, y)
f3(x, y)

and v =
f2(x, y)
f3(x, y)

, (2)

where the functionsfi(x, y) depend on the type of warp. For example, when warping a
planar reference image to a planar target image,fi(x, y) can be expressed as:

fi(x, y) =
�

pi1 pi2 pi3 pi4
�
2
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x
y
1

Æ(x, y)

3
75 (3)

The scalarspij are dependent upon the view matricesM 1 andM 2 and the vectoro1�o2
between the two centers of projection. The result is valid whenf3(x, y) > 0 (point is in
front of camera), and when (u, v) are in the range of target image space coordinates.

When warping a cylindrical reference image to a planar target image, the equations
become:

fi(x, y) =
�

ci1 ci2 ci3 ci4
�
2
64

sin(2�x=w)
cos(2�x=w)

y0 + (y1 � y0)y=h
Æ(x, y)

3
75 (4)

wherew andh are the width and height of the image in pixels, andy0 andy1 define
the vertical field-of-view of the cylindrical image. Similarly, a warp from a spherical
reference image to a planar target image is defined by:

fi(x, y) =
�

si1 si2 si3 si4
�
2
64

sin(2�x=w) sin(�y=h)
cos(2�x=w) sin(�y=h)

cos(�y=h)
Æ(x, y)

3
75 (5)



3.1 Wavelet warping

In order to perform 3D warping in the wavelet domain, we express the warping equa-
tions as element-wise divisions between three linear combinations of matrices. LetFi
denote the matrix of all the valuesfi(x, y), and letU andV denote the matrices con-
taining all of the warpedu andv target coordinates. Using these matrices we rewrite
equation (2) as

U =
F1

F3
and V =

F2

F3
,

where
Fi = mi1A + mi2B + mi3C + mi4D. (6)

In the planar-to-planar warp, for example, the linear combination coefficientsmij are
simply thepij -s from equation (3), and the matrices are defined as follows:

A = [x]x,y B = [y]x,y C = [1]x,y D = [Æ(x, y)]x,y (7)

Thus, the matrixA is simply a linear ramp, increasing from left to right; all of its rows
are the same vector [0, 1,: : : , n� 1]. Similarly, the matrixB is a linear ramp, and all
of its columns are the same vector. The matrixC is constant. The wavelet transform of
these matrices is extremely sparse, and the efficiency of our wavelet warping algorithm
stems from this sparse representation.

In the cylindrical-to-planar case the matricesA, B andC are slightly more compli-
cated:

A =
�
sin(2�x=w)

�
x,y

B =
�
cos(2�x=w)

�
x,y

C =
�
y0 + (y1 � y0)y=h

�
x,y

D = [Æ(x, y)]x,y
(8)

Still, note that each of the matricesA andB is a function of a single variablex, which
means that in each of these two matrices all of the rows are equal. Similarly,C is a
function ofy, and therefore all of the columns are equal. Both the standard cylindrical-
to-planar warp and our wavelet warping algorithm exploit this structure to save compu-
tations.

Finally, in the spherical-to-planar case the matrices are:

A =
�
sin(2�x=w) sin(�y=h)

�
x,y

B =
�
cos(2�x=w) sin(�y=h)

�
x,y

C =
�
cos(�y=h)

�
x,y

D = [Æ(x, y)]x,y
(9)

In this case onlyC is a function of a single variabley, and therefore all of its columns
are equal.

The wavelet warping operation consists of two steps: computation of linear combi-
nations of matrices (equation (6)), followed by clipping and element-wise divide. The
first step is carried out in the wavelet domain, as illustrated in Figure 1. Thus, following
equation (1), we compute the matricesFi as follows:

Fi = T�1T (mi1A + mi2B + mi3C + mi4D)

= T�1 (mi1T(A) + mi2T(B) + mi3T(C) + mi4T(D)) (10)

Several things should be noted at this point:
� The matricesA, B, andC depend only on the type of warp (planar, cylindrical, or

spherical), and are independent of the reference or the target images. Consequently,
T(A), T(B), T(C) are precomputed once for each type of warp, and then reused for
all warping operations.
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Fig. 1. Standard warping vs. wavelet warping.

� The matrixD, which is the disparity image of the reference view is independent of
the target view, andT(D) is precomputed once for each reference view.

� The scalarsmij are dependent upon both the reference and the target view, and are
calculated once for each target view, the same as in a standard warp.
The pseudocode for the resulting warping algorithm is listed in Figure 2. Note that

all wavelet-transformed matrices are represented by arrays containing only the non-zero
coefficients. Each entry in such an array has anindexfield indicating position of the
coefficient, and avaluefield containing the value of the coefficient. Our implementation
uses an integer wavelet transform [3]. Since the disparity values inD as well as the
entries ofA, B, andC (in the cylindrical and spherical cases) contain floating point
values, these values are first mapped into an integer range.

3.2 Choice of basis

In order to make our wavelet warping algorithm as efficient as possible, we must choose
a suitable wavelet basis. There are two requirements that the chosen basis must satisfy:
(i) the transformsT(A), T(B), T(C), andT(D) should be sparse; (ii) the reconstructions
Fi = T�1(F̂i) should be fast to compute. After experimenting with several different
options, we have chosen a slightly modified version of the second order interpolating
wavelet transform,I (2, 2) [18]. The modification consists of omitting the update phase
of the lifting scheme. The resulting transform requires8

3n2 operations to decompose or
reconstruct ann� n matrix using the 2D nonstandard wavelet transform.

The wavelet coefficients of this transform measure the extent to which the original
function fails to be linear. In the case of a planar warp, the matricesA andB are simply



Pre-processing:
For each type of warp, precompute transforms:T(A),T(B),T(C)
For each reference image, precomputeT(D)
Store non-zero coefficients in arraystA, tB, tC, tD

Input: Reference image, target view, coefficient arraystA, tB, tC, tD
Output: Target image

3D Warp:
for i = 1 to 3

Computemij for j = 1 to 4
foreach coefficient arrayt

for l = 1 to length oft
F̂i [t[l]. index] = F̂i [t[l]. index] + mij t[l]. value

endfor
endfor
ReconstructFi = T�1(F̂i)

endfor

Clip and Divide:
for x = 0 to w� 1

for y = 0 to h� 1
w = F3(x,y)
if w> 0 then (u, v) = 1

w(F1(x, y),F2(x, y))
if (u,v) 2 target image spacethen target(u, v) = ref(x,y)

endfor
endfor

Fig. 2. Wavelet domain warping.

linear ramps and matrixC is constant (eq. (7)). Consequently, the transformsT(A) and
T(B) consist of two non-zero coefficients each, andT(C) consists of a single non-zero
coefficient. Note that this islossless compressionof the three matrices — they can be
reconstructed exactly from these sparse transforms.

In the case of a cylindrical warp (eq. (8)) the transformsT(A) andT(B) have fewer
than 1

9n2 non-zero coefficients each, whileT(C) has two non-zero coefficients.
In the case of a spherical warp (eq. (9)) the transformsT(A), T(B) andT(C) have

fewer than1
9n2 non-zero coefficients each. Once again, the compression of the matrices

is lossless.
As for the disparities matrixD, the number of non-zero coefficients depends, of

course, on the reference image. In our experiments, roughly one third of the coefficients
of T(D) were non-zero. Although the number of non-zero coefficients can be decreased
further by lossy wavelet compression, it is not beneficial to do so. As we shall see in the
next section, the computational bottleneck of wavelet warping lies in the reconstruction
stage. A slight reduction in the number of coefficients does not significantly improve
performance, while a more drastic truncation causes errors in the mapping, resulting in
visible artifacts.



4 Analysis and Results

The complexity of the standard 3D warp depends on the type of warp. A planar-to-
planar warp computes equation (3) using an incremental loop, which requires a single
addition for each increment inx or y, plus an additional multiplication and addition
for the generalized disparity term for eachfi [14]. The clipping is followed by two
divisions. Thus, the total number of operations to warp ann� n image is 11n2.

In the cases of cylindrical-to-planar and spherical-to-planar warps, the computa-
tion cannot be done incrementally. To perform the standard warp efficiently, the terms
in matricesA, B, andC are precomputed and stored in lookup tables (LUT). In the
cylindrical-to-planarcase, further savings are possible since, as pointed out earlier, there
are onlyn distinct terms in each of the three matrices. Thus, eachmij must be multiplied
with only n, rather thann2 different terms. A similar optimization is performed in the
spherical-to-planar case when computingmi3C.

In contrast, since the wavelet warping algorithm performs operations only on the
non-zero elements of the transformed matrices, the total number of operations required
to compute equation (10) ist multiplications andt � jT(D)j additions (wheret is the
total number of non-zero wavelet coefficients), plus the cost of the reconstruction step
that takes8

3n2 operations in our implementation. We perform three reconstruction steps
(one for eachFi), followed by clipping and two divisions per pixel. The results of the
analysis are summarized in the following table:

Operation any wavelet warp planar cylindrical spherical

Addition 8n2 + 3(t � jT(D)j) 6n2 + 3n 6n2 + 3n 9n2

Multiplication 3t 3n2 3n2 + 9n 9n2 + 3n
Division 2n2 2n2 2n2 2n2

Total 10n2 + 6t � 3jT(D)j 11n2 + 3n 11n2 + 12n 20n2 + 3n

As explained in Section 3.2, our choice of wavelet basis results in a total number of
t = jT(D)j + 5 non-zero coefficients in the wavelet planar warp,t < 2

9n2 + jT(D)j + 2 in
the cylindrical case, andt < 1

3n2+jT(D)j in the spherical case. The conclusion from our
analysis is therefore that wavelet warping is as fast as the most efficient standard warp
in the planar and cylindrical cases, while in the spherical warp we can expect speedups
by a factor greater than 20=13.

4.1 2D vs. 1D decomposition

The standard warping algorithm warps the reference image pixels to their destination
one-by-one, so its intermediate storage requirements areO(1). In contrast, the wavelet
warping algorithm described above must reconstruct the three matricesFi before com-
puting the target pixel coordinates. Thus, it requiresO(n2) intermediate storage. When
the warped image is sufficiently large, the intermediate storage requirements may ex-
ceed the size of the L2 cache, resulting in a performance penalty. In this case, we
use a modified version of the wavelet warping algorithm. This version computes a 1D
wavelet decomposition of each row in each of the matricesA, B, C, andD instead of
the 2D non-standard wavelet decomposition. The linear combination of the matrices
is then computed row-by-row. Now the reconstruction step is performed on one row
at a time, and the required intermediate storage isO(n). In addition to avoiding cache
misses, this modification also allows us to take advantage of the fact that in many of the
matrices the rows are identical, as pointed out earlier for the standard cylindrical and



spherical warps. On the other hand, using the 1D transform version slightly increases
the number of non-zero coefficients: in our experiments with this method we found
that roughly half of the coefficients ofT(D) were non-zero (compared to third with 2D
decomposition). The 1D version is still faster than the 2D version, but it compromises
our ability to perform the warping in a true multi-resolution fashion, as described in the
next section. Since memory speed and cache size tend to increase faster than image
resolution, it is safe to assume that in the near future it will be possible to use the 2D
version even on large images, without incurring a performance penalty.

4.2 Empirical results

The theoretical analysis presented above has been validated experimentally. We have
implemented our wavelet warping algorithm, as well as the standard warps: incremen-
tal planar-to-planar, LUT-based cylindrical-to-planar and spherical-to-planar, with the
optimizations mentioned earlier. The algorithms were implemented in Java. All of the
results reported in this paper were measured on a 450 MHz Pentium II processor. In all
our comparisons we measured the entire warping time, including reconstruction, clip-
ping, and the divisions by the homogeneous coordinate. The averaged performance of
the different warping algorithms (in frames per second) is summarized in the following
table.

Type of Warp standard warp 2D wavelet 1D wavelet

planar (5122 reference) 6.5 6.5 7
cylindrical (512� 256 reference) 12 12 15
spherical (512� 256 reference) 7.7 14 14
spherical (1024� 512 reference) 4 4 6.5

As predicted by our analysis, in the planar and cylindrical cases, we found wavelet
warping to be roughly as fast as the standard algorithms, when 2D decomposition of the
matrices was used. Using the 1D decomposition version, we found wavelet warping to
be slightly faster (up to 25 percent in the cylindrical case) than the standard algorithms.
Note that in the planar case the reference image has twice as many pixels as in the
cylindrical case. This is the reason that the number of warps per second in the first row
of the table is smaller almost by a factor of two.

As expected, in the spherical case with a 512� 256 reference image, wavelet warp-
ing outperforms the standard algorithm by a factor of roughly 1.8. When the resolution
of the spherical reference image is increased to 1024� 512, 2D wavelet warping suf-
fers from cache misses and the performance drops down to the speed of the standard
algorithm. The 1D wavelet version, however, still outperforms the standard algorithm
by a factor of over 1.6. Figure 3 (see color plates) shows a spherical-to-planar warping
example. The two rectangular images on the left show a spherical reference image of a
chapel along with the corresponding depth image. The middle image is a planar view of
the chapel taken from a slightly displaced view point. Since only one reference image
was used, some disocclusion artifacts can be seen. The right image is another planar
view of the chapel, taken from the original view point.

5 Multi-Resolution Warping

Suppose that we have an image-based representation of a 3D object and would like
to generate a novel view in which the object is farther away from the viewpoint, and



thus appears much smaller than in its reference views. Or perhaps, we are interested in
rapidly generating lower resolution novel views when the view is constantly changing,
and then refine it if the camera stops moving. Our wavelet warping algorithms are well
suited for such multi-resolution and/or progressive rendering.

When wavelet-warping a reference image to a target image of lower resolution, we
compute the linear combination (10) exactly as before. However, in this case there
is no need to perform a full reconstruction of the result. For example, if the target
image resolution is twice smaller in each dimension, we stop reconstruction just before
processing the wavelet coefficients of the finest level. As a result, the reconstruction
step is faster by a factor of four, and there are also four times fewer clip-and-divide
operations. The warped coordinates (u, v) are still generated in the original range, so
they are shifted right by one bit.

When the target image resolution is lower, we must low-pass filter the color values
of the reference image pixels, before copying them to the target image. Therefore,
the color channels of the reference image are also represented in the wavelet domain.
Prefiltered color values are obtained by reconstructing the image incrementally, as the
resolution of the result is progressively refined from coarse to fine.

Figure 4 (see color plates) shows the results of planar-to-planar wavelet warping to
different target resolutions. Two 5122 reference views of a synthetic scene (with depth
for each pixel) were warped to a common novel view. Both reference views and their
corresponding depth images are shown in the top row. In the bottom row we show the
target image generated at quarter (1282), half (2562), and full (5122) resolutions, from
left to right. In order to make the differences visible, all three images are shown at the
same size in the figure.

When the target image is generated at full resolution, the wavelet warp is performed
at roughly 6.5 frames per second (see table in previous section). However, when the
target resolution is reduced by half, wavelet warping becomes more than 4 times faster
compared to full resolution warping (around 27 frames per second). At quarter resolu-
tion, wavelet warping becomes more than 16 times faster.

It should be noted that multi-resolution warping can also be achieved within a stan-
dard warping framework by using an over-complete pyramid-based image representa-
tion (e.g. a quadtree), but at a cost of increasing the size of the representation by a
factor of 4=3. In addition, wavelet warping has the advantage that the computation
is progressive: a low resolution result can be progressively refined without redundant
computations, simply by performing one more level of reconstruction. In contrast, in a
pyramid-based scheme each level must be warped from scratch.

6 Fast Warping of Image Sequences

When warping an entire sequence of reference images taken using fixed viewing param-
eters (for example, a sequence that captures a dynamic event as seen from a particular
viewpoint), temporal coherence can be utilized to make the computation faster than
warping each frame individually. This is particularly easy to see using the matrix nota-
tion introduced earlier. The matricesA, B, andC are the same for any reference image,
and the only matrix that differs between successive frames is the disparities matrixD.
Let D(t) denote the disparity matrix of framet. Each frame of the warped sequence can
be computed incrementally as

F(t+1)
i = F(t)

i + mi4�D(t), where �D(t) = D(t+1) � D(t).



Thus, if the difference matrices�D(t) are precomputed, it takes only 3kn2 additions,
3kn2 multiplications, and 2kn2 divisions to forward-warp ann� n� k image sequence
(saving 3kn2 additions compared to warping each frame individually). This is a simple
observation, and the improvement is applicable to standard warping, but we have not
encountered it in the image-based rendering literature.

Temporal coherence in this case is easily exploited in the context of wavelet warp-
ing. We precompute the 2D wavelet transformsT(�D(t)). Each warped frame is then
generated as follows:

F(t+1)
i = F(t)

i + T�1
�
mi4T(�D(t))

�
. (11)

In other words, the differences between successive disparity images are multiplied by
mi4 in the wavelet domain. Since the disparities of many pixels remain unchanged
between consecutive frames, the wavelet transform of the differences is very sparse.

Utilization of temporal coherence in wavelet warping is demonstrated in the follow-
ing “virtual studio” example. In this example we generate a target image sequence by
warping sequences of images from three different sources into a common target view.
Three source images, one from each source, are shown in the top row of Figure 5 (see
color plates). Three of the resulting images are shown in the bottom row. One of the
sources is a video sequence of an actor performing in front of a Zcam — a real-time
depth-sensing camera [19]. Another source is a synthetic animation of a coffee-table
following a circular trajectory. The third source is a still image of a synthetic 3D scene
(a room). The target view is different from each of the original views of the three image
sources. The three sources are wavelet-warped to the target view, where they are com-
bined using a Z-buffer. The result is a video sequence where the actor is looking at the
coffee-table that flies in a circle about him. Using wavelet warping, as described earlier
in this section, the target sequence is generated in real time at 15 fps, which is faster by
a factor of 2.5 than wavelet-warping each frame individually.

7 Conclusions and Future Work

We have presented a simple way of computing various 3D image warps in the wavelet
domain. We have demonstrated (both analytically and experimentally) that performing
these warps in the wavelet domain is in many cases faster than their direct computa-
tion, particularly in the spherical-to-planar warp case. Furthermore, wavelet warping
enables multi-resolution and progressive computations, with no storage or computation
overhead. Finally, we have presented a wavelet warping algorithm for image sequences,
which utilizes temporal coherence to achieve considerable speedups over frame-by-
frame warping. We intend to use this algorithm for 3D warping of spherical depth
movies.

In order to extend and improve our wavelet warping approach, we would like to
develop an adaptive multi-resolution warping scheme, which would allow to warp dif-
ferent regions of a reference view at different resolutions.

The warping algorithms presented in this paper are one example of a more general
approach in which various operations on images are expressed using linear combina-
tions of matrices, and then performed directly in the wavelet domain. In addition to 3D
warping we have applied this approach to convolution of images and image sequences
[8]. In the future we plan to apply our approach to other types of image and video
operations, such as other types of image warping (perhaps using more complicated
mappings), and blending of image sequences.
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