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Abstract

We present an algorithm based on statistical learning for synthesizing static and
time-varying textures matching the appearance of an input texture. Our algorithm is
general and automatic, and it works well on various types of textures including 1D
sound textures, 2D texture images and 3D texture movies. The same method is also
used to generate 2D texture mixtures that simultaneously capture the appearance of a
number of different input textures. In our approach, an input textures is treated as a
sample signal generated by a stochastic process. We first construct a tree representing
a hierarchical multi-scale transform of the signal using wavelets. From this tree, new
random trees are generated by learning and sampling the conditional probabilities of
the paths in the original tree. Transformation of these random trees back to signals
results in new textures. In the case of 2D texture synthesis our algorithm produces
results that are generally as good as those produced by earlier works in this field. For
texture mixtures our results are better and more general than those produced by earlier
works. For texture movies, we present the first algorithm that is able to automatically
generate movie clips of dynamic phenomena such as waterfalls, fire flames, a school
of fish, a crowd of people, etc. A one-dimensional variant of our algorithm is able
to synthesize various sound textures, such as traffic, water sounds, etc. Our results
indicate that the proposed technique is effective and robust.
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1 Introduction

Texture synthesis is an interesting and important problem in the field of computer graph-
ics. Recently, several techniques have emerged in the computer graphics literature that are
able to analyze an input texture sample and synthesize many new random similar-looking
textures [9, 19, 38]. This work extends these techniques in several important ways. First,
we describe a newtexture mixingalgorithm — a statistical learning algorithm that operates
on several differentinput texture samples to synthesize a new texture. This new texture is
statistically similar to all of the input samples and it exhibits a mixture of their features.
Second, we extend our approach from the domain of static textures to the domain oftexture
movies: dynamic, time-varying textures, or TVTs for short. More specifically, we present
a technique capable of generating a sequence of frames, corresponding to a temporal evo-
lution of a natural texture or pattern, that appears similar to an input frame sequence. For
example, using this technique we have been able to generate short movies of various dy-
namic phenomena, such as waterfalls, fire flames, a school of jellyfish, turbulent clouds, an
erupting volcano, and a crowd of people. The generated sequences are distinguishable from
the original input sample, yet they manage to capture the essential perceptual characteris-
tics and the global temporal behavior observed in the input sequence. A specialized version
of this method, described in a separate paper [2], is able to synthesize 1Dsound textures,
such as sounds of traffic, water, etc.

The natural applications of texture movie synthesis are in the areas of special effects for
motion pictures and television, computer-generated animation, computer games, and com-
puter art. Our method allows its user to produce many different movie clips from the same
input example. Thus, a special effects technical director should be able to fill an entire
stadium with ecstatic fans from a movie of a small group, or populate an underwater shot
with schools of fish. Designers of 3D virtual worlds should be able to insert animations of
clouds, smoke, and water from a small number of input samples, without ever repeating the
same animation in different places. However, these are by no means the only applications
of such a technique. For example, methods for statistical learning of 2D texture images
have been successfully applied not only to texture synthesis, but also to texture recognition
and image denoising [11]. These applications are made possible by realizing that statistical
learning of 2D textures implicitly constructs a statistical model describing images of a par-
ticular class. Similarly, our approach for learning TVTs can be used as a statistical model
suitable for describing TVTs. Therefore, it should be possible to apply this statistical model
for tasks such as classification and recognition of such movie segments.
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1.1 Overview of Approach

Texture images are examples of approximately stationary 2D signals. We assume such
signals to be generated by stochastic processes. This thesis introduces a new approach for
statistical learning of such signals:

1. Obtain one or more training samples of the input signals.

2. Construct a hierarchical multi-resolution analysis (MRA) of each signal sample.
Each MRA is represented as a tree, assumed to have emerged from an unknown
stochastic source.

3. Generate a new random MRA tree by statistically merging the MRA trees of the
input samples.

4. Transform the newly generated MRA back into a signal, yielding a new texture that
is statistically and perceptually similar to each of the inputs, but at the same time
different from them.

Note that the procedure outlined above is applicable to generaln-dimensional signals, al-
though it is practical only for small values ofn (since its time and space complexities are
exponential inn).

Since the tree merging algorithm in stage 3 above involves random choices, each invocation
of the algorithm results in a different output texture. Thus, many different textures can be
produced from the same input. If all of the input samples are taken from the same texture,
we obtain a 2D texture synthesis algorithm similar to that of De Bonet [9]. If the input
samples come from different textures, the result is a mixed texture.

A naive extension of the above approach to generation of TVTs would be to independently
synthesize a new frame from each frame in the input sequence. However, this method fails
to capture the temporal continuity and features of the input segment. In contrast, the ap-
proach presented in this thesis is to synthesize all three dimensions of the TVT simulta-
neously (although the temporal dimension is processed differently from the spatial dimen-
sions).

As in the 2D texture case, we assume that a time-varying texture is generated by a stochastic
process. It is a 3D signalS(x; y; t), wherex andy are the spatial coordinates of the signal
(pixel coordinates in each frame), andt is the temporal coordinate (frame number). By
applying the approach outlined above to 3D signals, with an appropriately chosen MRA
scheme, we obtain a statistical learning algorithm for TVTs.

3



1.2 Thesis Outline

The rest of this thesis is organized as follows. In the next section we provide definition
that will allow the reader to better understand the terms we will be using, and will provide
a common language that will be used in this thesis. In Section 3 we review the previous
work and the mathematical background needed for describing our algorithm. Section 4
presents the statistical learning algorithm. In Section 5 we show the implementation of our
algorithm to the task of synthesizing 2D textures, we also show how to use our algorithm
to produce “texture mixing”. In Section 6 we show the implementation of our algorithm
to the synthesis of sound textures and texture movies. Section 7 concludes this thesis and
discusses our results and directions for future work.
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2 Definitions

Before we continue to describe our work, we first define some terms that will be used in
the following sections.

2.1 Textures

There exists no precise definition of texture. In this section we will try to present some of
the definitions that appear in the literature, and show how these definitions relate to the
definition of textures that we meant. We will also extend this definitions (that were given
to describe 2D textures), and apply them to sound textures and texture movies.

A good source for definitions of textures can be found on the web in [1]. Here we bring
some of the definitions that appear in that site. Jain in [20] defines textures as:
The term texture generally refers to repetition of basic texture elements called texels. The
texel contains several pixels, whose placement could be periodic, quasi-periodic or ran-
dom. Natural textures are generally random, whereas artificial textures are often determin-
istic or periodic. Texture may be coarse, fine, smooth, granulated, rippled, regular, irregu-
lar, or linear.

Another definition can be found in a book by Wilson and Spann [34].
Textured regions are spatially extended patterns based on the more or less accurate repeti-
tion of some unit cell (texton or subpattern).

The definition that best matches our view of textures comes from Smith in [29]. He gives
the following definition.
Textures are homogeneous patterns or spatial arrangements of pixels that regional intensity
or color alone does not sufficiently describe. As such, textures have statistical properties,
structural properties, or both. They may consist of the structured and/or random placement
of elements, but also may be without fundamental subunits.

We extend this definition in the following way. As will be described in Section 3.2, we use
statistical learning algorithm in order to synthesize new textures. In order to use such an
algorithm on a given sample, we claim the following:
A Texture is a signal that exhibit the following property. Using any window of size larger
than some critical size, the “information content” exhibited in the window is invariant to
the window’s position within the given sample.
See Figure 1 for examples of 2D textures.
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2.2 TVT

The last definition allows us to use the term texture not only for describing a particular
vatiety of 2D images, but also for sound textures and texture movies. These signals share a
common property: they are bothtime-varying textures, or TVTs for short. In these signals
the claim that all the information is contained in a small sample is also true. For example,
a drum beat repeats itself several times within a short sound segment. The same thing is
true for a waterfall video sequence. In a waterfall sequence the motion of the falling water
repeats itself. Another thing in common between these signals and 2D textures is the fact
that they too usually consist of fundamental subunits (such as a car horn in a traffic jam
sound or a single cloud in a sky full of clouds). For this reasons we thought that they would
be appropriate for statistical learning, and indeed this was the case. Example of a waveform
of a sound texture is shown in Figure 2.

In the next two sections, when we refer to textures, we mean all kinds of textures (2D as
well as TVTs), unless we specifically state differently. The implementation of our algorithm
to synthesizing TVTs is explained in detail in Section 6.

2.3 MRA

MRA stands formulti-resolution analysis. This analysis on an input texture is usually done
using wavelets as described in Section 3.3. The result of such an analysis is a tree that rep-
resents the input texture. Our algorithm for statistical learning operates on the MRA repre-
sentation of the input texture. Thus, in order to implement our algorithm we first transform
the input texture into its MRA (tree) representation, and apply the algorithm on this repre-
sentation. The output of the algorithm is also an MRA representation of the output texture,
and an inverse transform is applied in order to generate the output texture. Our algorithm is
independent of the specific representation chosen. It is general, and can be applied to any
MRA the user wishes to work with. However, choosing the right representation is a key is-
sue when trying to produce good output textures. We worked with different MRAs in order
to produce the three types of textures we discuss in this work. For the sound textures we use
an MRA which is a binary tree as described in Section 6. For the 2D textures we use a quad
tree as described in Section 5. The texture movies are represented using a combination of
octrees and quad trees as will be discussed in Section 6. Another difference between the
MRAs used for the three types of textures we describe in this work are the filters we used.
The specific filters we used for each type are described in detail in Section 3.3.
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(a) (b)

(c) (d)

Figure 1: 2D texture example. (a) and (b): synthetic textures of surface and drops. (c) and
(d): natural textures of bricks and plants. Note that all this textures consist of fundamental
subunits.

Figure 2: Sound texture example in which the waveform of a drum beat is shown. Again, it
can be seen that this sound segment consist of repeating subunits.
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3 Previous Work and Background

In this section we review the previous work that has been done on texture synthesizing. We
also supply the mathematical background that is needed in order to explain our statistical
learning algorithm and the MRA construction.

3.1 Previous Work

Most of the previous work on 2D texture synthesis has focused on the development of
procedural textures[15, 24, 33, 35, 36].

More recently work has been done which considers textures as sample from probabilistic
distribution. The first methods were suggested by Zhuet al [38] and Heeger and Bergen
[19]. Both these works iteratively resample random noise to coerce it into having particular
multiresolution histograms that matches the histograms of the input sample. De Bonet in
[10] analyzes their approach and shows several cases in which the output fails to capture the
appearance of the input texture. The major drawback of their approach is the fact that even
if two images have the same subband histograms, they could have very different appearance
because their joint occurrences does not match.

To solve this problem De Bonet in [10, 9, 11] suggests a method that synthesizes 2D tex-
tures using a multiresolution sampling procedure. His work is based on the fact that images
perceived as textures contain regions which differ by less than some discrimination thresh-
old, and randomization of these regions does not change the perceived characteristics of
the texture. His method works in a two-phase process. The input texture is first analyzed
by measuring the joint occurrence of texture discrimination features at multiple resolu-
tions. In the second phase, a new texture is synthesized by sampling successive spatial
frequency bands from the input texture, conditioned on the similar joint occurrence of fea-
tures at lower spatial frequencies. Our work can be viewed as extensions of De Bonet’s
approach [9] to multiple input samples and to time-varying textures.

Texture mixing, a process of generating a new texture that contains features from several
different input textures, has been addressed in several previous works. Burt and Adelson [6]
produce smooth transitions between different textures by weighted averaging of the Lapla-
cian pyramid coefficients of the textures. This technique is very effective for seamless im-
age mosaicing, but is less suitable for producing a mix of textures across the entire image,
as will be demonstrated in section 5.2. Heeger and Bergen [19] use their histogram-based
texture synthesis algorithm to generate texture mixtures in which the color comes from
one texture, while the frequency content comes from another. In this work we produce a
different kind of mixtures, in which both colors and frequencies are mixed together.
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To our knowledge, there have not been any previous attempts towards statistical learning
of TVTs from input samples. So far, synthesis of dynamic natural phenomena has mostly
been possible only via computationally intensive physically based simulations. For exam-
ple, steam, fog, smoke, and fire have been simulated in this manner [16, 14, 30, 31]. Explo-
sions, fire, and waterfalls have been successfully simulated by animated particle systems
[25, 26, 28]. Simplified physically-based models have also been used to produce synthetic
waves and surf [18, 23]. While the techniques mentioned above have been able to generate
impressive results of compelling realism, a custom-tailored model must be developed for
each type of simulated phenomena. Furthermore, such simulations are for the most part
expensive and, more importantly, the resulting animations can be difficult to control. In
contrast, as we shall see, statistical learning of TVTs is extremely general, automatic, and
fast alternative, provided that an example of the desired result is available.

Heeger and Bergman [19] have applied their texture synthesis technique to the generation
of 3D solid textures (in addition to 2D texture images). However, in a solid texture all three
dimensions are treated in the same manner, whereas in a 3D TVT the temporal dimen-
sion must be treated differently from the two spatial dimensions, as shall be explained in
Section 6. Another difference between their work and ours is that their method learns the
statistical properties of a 2D texture and the generates a 3D texture with the same properties,
whereas our method analyzes a 3D signal (TVT) directly.

Sound synthesis is a wide and fertile research area. Since our primary interest in this work
is in the field of computer graphics, we shall not attempt to review the sound synthesis
literature here. The interested reader in refered to [2] for a detailed description of the sound
synthesis algorithm.

3.2 Statistical Learning

We first informally define and explain a few terms needed for our discussion. One of the
main tasks instatistical learningis the estimation of an unknown stochastic source given
samples, which are examples from the source. For instance, a sample can be a complete
movie, a 2 dimensional texture, a sound segment, etc. A good statistical model not only fits
the given examples but generalizes to generate previously unseen examples. Generalization
is a key issue in learning. A model with good generalization can generate new random ex-
amples with a probability distribution that resembles that of the unknown source.Sampling
the modelmeans that we generate such new random examples from a learned model.

9



3.2.1 The Mutual Source

Our basic assumption is that multi-dimensional signals such as texture images and tex-
ture movies, are random samples of an unknown stochastic source. Our goal is to learn a
statistical model of this source given a small set of training examples.

Consider signal exampless1; s2; : : : ; sk where each of thesi is assumed to be an example
from a stochastic sourceSi. Although the sourcesSi are unknown we assume thatsi is
a typical example from that source conveying its essential statistics. Our task is to esti-
mate the statistics of a hypothetical sourceZ = Z(S1; : : : ; Sk) called themutual source
of S1; : : : ; Sk. Intuitively, the sourceZ is the “closest” (in a statistical sense) to all theSi
simultaneously.
More formally, we define the mutual source in the following way. LetP andQ be two dis-
tributions. Their mutual sourceZ is defined as the distribution that minimizes the Kullbak-
Leibler (KL) divergence [7] to bothP andQ. The KL-divergence from a distributionZ
to a distributionP , where bothP andZ are defined over a supportA, is defined to be
DKL(P jjZ) =

P
a2A P (a) log

P (a)
Z(a)

. Specifically,

Z = argmin
Z0

�DKL(P jjZ
0) + (1� �)DKL(QjjZ

0):

The parameter� should reflect the prior importance ofP relative toQ. (When no such prior
exists one can take� = 1=2). The expressionminZ0 �DKL(P jjZ

0) + (1� �)DKL(QjjZ
0)

is known as the Jensen-Shannon dissimilarity. Using convexity arguments it can be shown
(see e.g. [17]) that the mutual source is unique, and therefore, the Jensen-Shannon measure
is well defined.

After learning the mutual sourceZ, we can sample from it and synthesize from it “mixed”
signals that are statistically similar to each of the sourcesSi (and the examplessi). In
the special case where the sampless1; : : : ; sk originate from the same sourceS (that is
S = S1 = � � � = Sk), the mutual sourceZ is exactlyS and when we sample fromZ we
synthesize new random examples that resemble each of the given examplessi.

3.2.2 Choosing the Representation

A key issue when modeling, analyzing and learning signals is the choice of their representa-
tion. For example, a signal can be represented directly by its values. Alternatively, it can be
represented in the frequency domain via the Fourier transform. These two representations
are the most common for modeling 1D and 2D signals and there are various, well estab-
lished approaches to estimating the underlying unknown source with respect to such repre-
sentations (see e.g. [5, 22]). Although the use of such representations has been successful
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in many application domains, they are not adequate for representation and analysis of “tex-
tural signals” such as the ones treated in this work. Such signals typically contain detail at
different scales and locations. Many recent research efforts suggest that a better representa-
tion for such signals are multi-resolution structures, such as wavelet-based representations
(see e.g. [3, 37]). The papers [4, 3] provide a theoretical formulation of statistical modeling
of signals by multi-resolution structures. In particular, these results consider a generative
stochastic source (that can randomly generate multi-resolution structures), and study their
statistical properties. They show that stationary signals (informally, a signal is stationary
if the statistics it exhibits in a region is invariant to the region’s location) can be repre-
sented and generated in a hierarchical order, where first the coarse, low resolution details
are generated, and then the finer details are generated with probability that only depends
on the already given lower resolution details. In particular, hierarchical representation was
already successfully applied to modeling the statistics of two-dimensional textures as stated
above [9, 11].

We also adopt this view and develop an algorithm that learns the conditional distributions
of the mutual source. We transform the given examples to their multi-resolution, tree rep-
resentations and learn the conditional probabilities along paths of the mutual source tree,
using an estimation method for linear sequences. Thus, we are left with the problem of
learning mutual sources of sequences, which are simply paths in the representing tree.

3.2.3 Statistical Learning of Sequences

The particular estimation algorithm for sequences we chose to use is an extension of the
algorithm from [17] which operates on sequences over a finite alphabet, as opposed to real
numbers. Given a sample sequenceS, this algorithm [17] generates new random sequences
which could have been generated from the source ofS. In other words, based only on
the evidence ofS, each new random sequence is statistically similar toS. The algorithm
generates the new sequence without explicitly constructing a statistical model for the source
of S. This is done as follows: suppose we have generatedsi, the firsti symbols of the new
sequence. In order to choose the next,(i + 1)-st symbol, the algorithm searches for the
longest suffix ofsi in S. Among all the occurrences of this suffix inS, the algorithm
chooses one such occurrencex uniformly at random and chooses the next symbol ofsi

to be the symbol appearing immediately afterx in S. This algorithm has been adapted to
work on paths of tree representations of the signals treated in this work, as described in
Section 4.
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3.3 Wavelets and Steerable Pyramids

Wavelets have become the tool of choice in analyzing single and multi-dimensional sig-
nals, especially if the signal has information both at different scales and localizations. The
fundamental idea behind wavelets is to analyze the signal’s local frequency at all scales
and locations, using a fast invertible hierarchical transform. Wavelets have been effectively
utilized in many fields, including video multimedia databases and coders, radar, magnetic
resonance and ultrasound imaging, stochastic resonance, solitons for local area communi-
cations, high resolution image synthesis, financial data analysis, industrial measurements,
and many more. For a comprehensive review of wavelets applied to computer graphics see
[32].

The wavelet is a multi-scale decomposition of the signal and can be viewed as a complete
tree, where each level stores the projections of the signal, with the wavelet basis functions
of a certain resolution (at all possible translations of the basis functions).

The wavelets we use in this work to analyze the input textures and generate the different
MRAs are produced by using the Daubechies wavelets [8] and thesteerable pyramids[27].
Daubechies wavelets are used in the time domain and steerable pyramids are used in the
image domain. Thus, for the sound textures we use only the Daubechies wavelets, and for
the 2D textures we use only the steerable pyramids (as described in Section 5). For the
texture movies we use a combination of both as described in Section 6.

The Daubechies wavelet is a one dimensional wavelet that produces a series of coefficients
that describe the behavior of the signal at dyadic scales and locations. The Daubechies
wavelet is produced as follows: Initially, the signal is split into lowpass/scaling coeffi-
cients by convolving the original signal with a lowpass/scaling filter (denoted in this work
by �) and the wavelet/detail coefficients are computed by convolving the signal using a
Daubechies wavelet filter (denoted	). Both responses are subsampled by a factor of 2, and
the same filters are applied again on the scaling coefficients, and so forth.

The steerable pyramid is a multi-scale, multi-orientation linear signal decomposition. This
wavelet has many superior properties compared to traditional orthonormal wavelets, espe-
cially with respect to translation and rotation invariance, aliasing and robustness due to its
nonorthogonality and redundancy. The steerable filter is produced as follows: Initially, the
signal is split into low and highpass subbands. The lowpass subband is then split into a set
of k oriented bandpass subbands usingk oriented filters (denoted in this work by
i) and
a new lowpass subband is computed by convolving with a lowpass filter (denoted�). This
lowpass subband is subsampled by a factor of 2 in each direction and the resulting sub-
sampled signal is processed recursively (see Figure 3). A detailed exposition on steerable
pyramids and further references can be found in [27].

The wavelets can be transformed back into the original signal using a fast hierarchical
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transform. The computation proceeds from the root of the tree down to the leafs, using
filters that are complementary to those used in the wavelet transform.
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Figure 3: System diagram for the first level of the steerable pyramid.H0 is a high pass filter
andL0 is a low pass filter. The
i are oriented bandpass filters and� is the lowpass filter.
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4 Statistical Learning Algorithm

In this section we describe a general algorithm for sampling the most likely mutual source
of stationaryn-dimensional signals. Section 5 describes the specialization of this algorithm
to the tasks of synthesizing and mixing two-dimensional textures. Section 6 describes the
specifications of synthesizing sound textures and movie textures using this algorithm.

The outline of our approach is as follows: givenk n-dimensional signals as input we con-
struct a2n-ary tree representing the wavelet-based multi-resolution analysis (MRA) of each
signal. From the point of view of our synthesis algorithm, each signal is now encoded as
a collection of paths from the root of the tree towards the leaves. It is assumed that all the
paths in a particular tree are realizations of the same stochastic process. The task of the
algorithm is to generate a tree whose paths are typical sequences generated by the most
likely mutual source of the input trees. From the resulting tree, a newn-dimensional signal
is reconstructed by applying a process inverse to the MRA.

Tree merging.Given k source signals represented by their MRA treesT1; : : : ; Tk with
corresponding priors (weights)�1; : : : ; �k, such that

P
�i = 1, our algorithm generates a

new tree by merging together paths present in the source trees. The algorithm is described
in pseudocode in Figure 4. The generation of the new tree proceeds in breadth-first order
(i.e., level by level). First, we randomly select one of the input treesTi (according to the
given priors). The root value ofTi along with the values of its children are copied intoT .
Now, let us assume that we have already generated the firsti levels of the tree. In order to
generate the(i + 1)-st level we need to assign values to2n children nodes of each node
in level i. Let xi be a value of such a node, and denote byxi�1; xi�2; : : : ; x1 the values of
that node’s ancestors along the path towards the root of the tree. The algorithm searches
thei-th level in each of the source trees for nodesyi with the maximal length�-similar path
suffixesyi; yi�1; : : : ; yj, where� is a user-specified threshold andi � j � 1. Two paths are
considered�-similar when the differences between their corresponding values are below a
certain threshold. This computation occurs in the routineCandidateSetin Figure 4. One
of these candidate nodes is then chosen and the values of its children are assigned to the
children of nodexi. In this way a complete new tree is formed.

Improvements.The tree merging algorithm described above requires the examination of
k2ni paths in order to find the maximal�-similar paths, for each of the2ni nodesxi in level
i. However, most of the computation can be avoided by inheriting the candidate sets from
parents to their children in the tree. Thus, while searching for maximal�-similar paths of
nodexi the algorithm only examines the children of the nodes in the candidate sets that
were found forxi�1 while constructing the previous level. This improvement is especially
important in the case of texture movies as described in details in section 6.
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Input: Source treesT1; : : : ; Tk, priors�1; : : : ; �k, threshold�
Output: A treeT generated by a mutual source ofT1; : : : ; Tk

Initialization:
Randomly chooseTi according to the priors�1; : : : ; �k
Root(T ) := Root(Ti)
Childj(T ) := Childj(Ti) for j = 1; : : : ; 2n

Breadth-First Construction:
for i = 1 to d� 1 (whered is the depth of the source trees):

foreach nodexi on leveli of T
foreach j = 1 to k

Cj := CandidateSet(Tj ; i; xi; �)
Randomly choose a nodeyij from setCj

endfor
foreach j = 1 to k

�j :=
�j jCj jPk

`=1
�`jC`j

(jCj j is the size of the setCj)

endfor
Choosej according to the distribution� = f�jg
Copy the values of the children ofyij to those ofxi

endfor
endfor

procedure CandidateSet(Tj ; i; xi; �)
Let x1; x2; � � � ; xi�1 be the ancestors ofxi
foreach nodeyi on leveli of Tj

Let y1; y2; � � � ; yi�1 be the ancestors ofyi
L[yi] := 0, sum:= 0
for ` = i to 1

sum+ = (x` � y`)
2

if sum
i�`+1 < � thenL[yi]++ elsebreak

endfor
endfor
M := maxyi L[yi]
return the set of all nodesyi such thatL[yi] == M

Figure 4: Then-dimensional tree-merging algorithm
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4.1 Synthesizing Textures of Arbitrary Dimensions

As defined in Section 2, textural signals can be described as signals that exhibit the fol-
lowing property. Using any window of size larger than some critical size, the “information
content” exhibited in the window is invariant to the window’s position within the given sam-
ple. Since all the textural information is present at samples that are bigger than the critical
size, we should be able to synthesize from such samples textures of arbitrary dimensions.

The algorithm described above constructs an output treeT of the same size as the input
treesT1; : : : ; Tk. It is easy to construct a larger (deeper) output tree as follows. Letd be the
depth of the input trees. In order to construct an output tree of depthd + 1 we first use our
merging algorithm2n times to compute2n new trees. The roots of those trees are then fed
as a low resolution version of the new signal to the MRA construction routine, which uses
those values to construct the new root and the first level of the new MRA hierarchy.

In this manner it is possible to generate sound textures of arbitrary length from a short input
sample of the sound. The same is true for our 2D texture synthesis algorithm. From a small
input 2D texture we can synthesize much bigger texture (as will be demonstrated in Section
5). However, in the case of 3D TVTs, this approach often results in a noticeable temporal
discontinuity.

4.2 Threshold Selection

The threshold� is used in our algorithm as a measure of similarity. Recall that in the original
suffix learning algorithm [17], the linear sequences contain discrete values. In order to
extend the algorithm to sequences of continuous values we use the following similarity
criterion. Two paths from nodesx andy to the root of the MRA tree are considered similar
if the difference between their values (at each corresponding node along the suffix of length
m of the path) are below a certain threshold. If two paths are similar, we can continue one
with values from the other, while still preserving the fact that they emerged from the same
stochastic source as shown in [17]. In our implementation of this algorithm we use level-
dependent similarity criteria for tree paths. Specifically, lower resolution levels of the tree
have looser similarity criteria than higher resolution levels, and therefore a larger threshold
is used at lower levels. This adaptive measure was chosen because the human visual system
is more sensitive to high frequency information.

The selection of the threshold has a big impact on the outcome of the algorithm. Selecting
a larger threshold causes the outcome to differ more strongly from the input (the actual
difference depends on the type of the input sample, as well as on the value of the threshold).
On the other hand, a small threshold can cause the outcome to be a copy of the input. Thus,
by leaving the threshold selection to the user, the user is supplied with a powerful tool to
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achieve the desired outcome. Usually, the thresholds used for synthesizing structured 2D
textures are lower than the ones used for synthesizing unstructured textures. This is due to
the fact that in the resulting texture we would typically like to retain the large features of
the structured texture. Allowing for too large a threshold in such a texture can “break” such
features by incorporating random values in wrong places. In the case of texture movies
however, selecting the threshold can prove to be a difficult task, since it is harder for the
user to assess the scale of the structure present in the temporal dimension of the sequence.
We address this problem in Section 6, and show how to automatically choose the threshold
in this case.

T1

Synthesized Tree Input Trees

T2
Level

1

2

3

4

Figure 5: Learning one node in a binary tree

4.3 Example

In Figure 5 we demonstrate our algorithm using an MRA which is a binary tree (as the one
we use for the sound texture synthesis in Section 6). We have constructed already the 4 top
levels of the synthesized tree (shown on the left). We are now constructing its 5-th level
by continuing each node of the fourth level. As can be seen we are doing so from left to
right, so some of the nodes in level 5 of the synthesised tree have already been continued.
Assume we are now looking to continue the node that is circled on the synthesized tree.
We will denote this node byx. On the right are two input trees, that represent the MRA’s
of the two input samples. The nodes in these trees that belong to the CandidateSet forx are
circled. The maximal similar suffix on those nodes is colored and thickened (most of the
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nodes that are not in the CandidateSet are omitted from the figure due to lack of space).
Note that the length of the maximal similar suffix path onT1 is 4 (we are counting the
nodes, not the edges), while the length of the maximal similar suffix path onT2 is only
3. Nonetheless, both trees have candidates to continuex. We now choose one of this trees
according to the distribution� = f�jg. Now we choose uniformly one of the candidates
in the chosen tree (the double circled node onT1), and use it to continuex by coping the
values of it’s children to the values of the children ofx. As stated in the algorithm we do
this to every node on level 4, and in this way we construct level 5 of the synthesized tree.
After d levels, we construct a tree that is in the same depth as the input one. This tree is
transformed back to the input sample representation, yielding a new texture.
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5 2D Texture Synthesis and Mixing

In this section we describe the implementation of our statistical learning algorithm to the
task of synthesizing 2D textures. We also show how one can use this algorithm to synthesize
new textures from several different ones, a process that we refer to as “texture mixing”.
As mentioned previously, the implementation of our algorithm to the synthesizing of 2D
textures from a single input texture appears similar to that of De Bonet [10, 9, 11]. A
detailed comparison between the two algorithm is given in this section.

5.1 Texture Synthesis

As explained in the previous section, our statistical learning algorithm begins by construct-
ing an MRA representation for each input sample of the signal. The MRA representation
we use to analyze 2D textures is the steerable pyramid [27] described in Section 3.3 with
four subband filter orientations (0, 45, 90, and 135 degrees). Color is handled by treating
each of the three (red, green, and blue) channels separately. Thus, each node in the MRA
tree contains a vector of length 12 (4 filter responses for each of 3 color channels). To ob-
tain thek input trees for our tree merging algorithm, we selectk large regions in the input
texture (overlapping and slightly shifted with respect to each other). A steerable pyramid is
then constructed for each region, yieldingk MRA trees. The trees are assigned equal priors
of 1=k. In practice, we found that two or three regions are sufficient for satisfactory results.
Our learning algorithm uses these trees to generate a new random MRA tree, which is then
transformed back into a 2D image.

Three different examples of textures synthesized by our algorithm are shown in Figure 6.
Each row shows a pair of images: the left image is the original texture from which the
source trees were generated, and the right image is a synthetic texture, larger than the
source by a factor of two in each dimension. Additional examples can be found at:
http://www.cs.huji.ac.il/˜zivbj/textures/textures.html

5.2 Texture Mixing

Texture mixing is a process of generating a new texture that contains features present in sev-
eral different input textures. Our statistical learning algorithm can be used to mix textures
in new creative and interesting ways. Instead of feeding the algorithm with several sam-
ples of the same texture, we provide it with samples of several different textures. Since our
algorithm produces a new MRA tree by sampling the mutual source ofall the input trees,
the resulting texture exhibits features from all the input textures. Note that this method is

19



input texture synthesized texture

Figure 6: Texture synthesis examples. The synthesized textures are four times larger than
the input ones. As described in Section 4, these larger textures were generated by applying
our algorithm four times on the same input. Because our algorithm generates a different
texture each time, the enlarged texture does not appear tiled.
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different from simply averaging the transform coefficients, since each value comes from
exactly one input tree. This allows the algorithm to produce a texture that has features from
all input textures, while the merging still looks natural (due to the constraints imposed by
the statistical learning algorithm). Figure 7 demonstrates the differences between simple
texture blending (7a), blending of MRA coefficientsa la Burt and Adelson [6] (7b), and
our technique (7c). Two additional texture mixing examples are shown in Figure 8.

The following problem may arise during texture mixing. When the input textures are very
different from each other, the algorithm tends to “lock on” to one of the input trees very
early. As a result, starting from a high level node in the generated MRA its entire sub-
tree comes from only one input texture. The result is a large non-mixed area in the output
image. A possible solution to this problem is to increase the threshold, relaxing the simi-
larity constraints on the path continuations. However, this solution often results in a blurry
outcome.

In order to solve the locking problem we try to allow at least one candidate from each input
tree to participate when selecting the continuation of a path in the synthesized tree high
levels. In order to still be able to preserve strong large features we compute and store in
each node of the input trees the cumulative sum of absolute values along the path from the
root to that node. This value tends to be large in areas where a strong edge feature is found.
When choosing among different candidates, we increase the probability of a candidate
according to the magnitude of its cumulative sum.

More specifically, we modify our algorithm as follows. When looking for candidates to
continue a nodex we make sure that there is a non-empty candidate set for each of the
input trees (the threshold is increased until the candidate set becomes non-empty). A single
candidate is uniformly chosen from each candidate set, as before. Now, instead of choosing
among these candidates based on the distribution� = f�jg, we choose the candidate with
the highest cumulative sum.

Note that this modified method prefers learning from input tree nodes supporting regions
in the texture that exhibit a strong global structure. This is so, because in such regions the
steerable filter has a strong response inall levels. In smoother regions any of the input
textures can be learned. For example, in a brick wall the edges between the bricks will be
learned from the brick texture, while the texture inside the bricks might come from other
less structured textures.

5.3 Comparison With De Bonet’s Algorithm

As mentioned earlier the application of our algorithm to the task of 2D texture synthesis is
similar to De Bonet’s method [10]. However, there are in fact several important differences
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(a) simple blend (b) multi-resolution blend

texture A (c) mixed texture texture B

Figure 7: Several different ways of mixing texture A (bottom left) with texture B (bottom
right). The top row shows two different blends of A and B: image (a) was obtained by a
simple blend of the two textures; image (b) was obtained by blending the coefficients of
the multi-resolution transforms of A and B. Compare these blends with the mixed texture
(c) produced by our algorithm. In (c) one can discern individual features from both input
textures, yet the merging appears natural.
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texture A mixed texture texture B

texture A mixed texture texture B

Figure 8: More texture mixing examples. Note that in the mixed textures one can discern
individual features from both input textures, yet the merging appears natural, as opposed to
blending or averaging of features.

23



between the two approaches. After explicitly stating our algorithm, we can now explain
those differences in detail.

The most important distinguishing feature of our algorithm is that our tree merging routine
takes several texture samples as input and constructs a texture that could have been pro-
duced by a mutual source of the input samples. In contrast, De Bonet’s algorithm operates
on a single texture sample. Using several input samples makes our algorithm more robust
and less sensitive to the position of specific features in the input texture. Another practical
implication of this difference is that our approach enables us not only to generate textures
similar to the input one, but also to synthesize mixtures of different textures, as illustrated
in Section 5.2. It should be noted that De Bonet and Viola briefly mention the possibility
of extending their approach to multiple input examples [12].

A second difference is that when our algorithm generates leveli tree nodes, we are actually
looking at nodes in leveli�1. For each such nodexwe are looking for nodes in the analysis
pyramids (in the same leveli� 1) that have paths similar tox. Once we choose a candidate
nodex0 from this set, we copy the values ofall the children nodes ofx0 to the children
nodes ofx. Since, according to our algorithm,x andx0 have the same stochastic source,
we would like to imitate this source when generating leveli values, thus generating all the
children values together. In contrast, when De Bonet’s algorithm generates leveli nodes,
each node in that level is generated separately and independently of its siblings. This can
result in more discontinuities in the synthesized texture.

A third difference between our approach and De Bonet’s is in the selection of the candidates
from which a continuation of a nodex is chosen. In both methods, candidates are chosen
based on similarity between paths in the tree. De Bonet’s method always considers the
entire path from the root of the tree to the candidate node. In contrast, our method looks
for the�-similar paths of maximal length, including those that do not reach all the way up
to the root. Thus, it is possible to choose nodes with paths that do not have similar values
in the top levels, but only in the lower levels. As a result, we consider more candidates,
allowing for a more varied texture.

See Figures 9 and 10 for a graphic explanation of the differences described above. In
practice, the results produced by our synthesis algorithms are of comparable quality to
those shown on De Bonet’s web pages at:
http://www.ai.mit.edu/ jsd/Research/Synthesis/SPSynth
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Figure 9: Learning the first 4 nodes of level 4 in the synthesized texture using De Bonet’s
algorithm. The red nodes are the path from each of the new synthesized nodes to the root.
The green nodes are the new synthesized nodes. The blue nodes are the nodes in path’s
that are similar to the red path in the input textures. The light blue nodes are the nodes
from which we copy the values to the new nodes in the synthesized tree. Note the three
differences. (1) Only one input texture. (2) The chosen nodes to continue the red path
are taken from different places in level 4 of the input textures MRA and do not share the
same father. (3) All candidate path’s must be similar up to the root. See the next figure for
comparison with our algorithm.

25



��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�

First Input  MRA

Synthesized  MRA

Our Algorithm

Second Input  MRA

Level 1 2 3 4

Figure 10: Learning the first 4 nodes of level 4 in the synthesized texture using our algo-
rithm. The red nodes are the path from each of the new synthesized nodes to the root. The
green nodes are the new synthesized nodes. The blue nodes are the nodes in path’s that are
similar to the red path in the input textures. The light blue node is the node in level 3 from
which we copy all its sons values to the new synthesized nodes. Note the three differences.
(1) More than one input texture. (2) The chosen nodes to continue the red path must share
the same father. (3) Arbitrary length of similar path’s are allowed, in the first input the
length of the similar path is 3 while in the second it is only 2.
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6 Synthesis of Time-Varying Textures

This section mainly deals with the application of our algorithm to the task of synthesizing
texture movies. A naive approach to generate such movies is to use a our 2D texture syn-
thesis algorithm in order to independently synthesize each frame from the corresponding
frame in the input sequence. However, this method fails to capture the temporal continuity
and features of the input segment, as demonstrated in the video accompanying this work.
In contrast, the approach we will present in this section synthesizes all three dimensions of
the TVT simultaneously.

6.1 Differences Between 2D Textures and TVTs

In this section we show how to extend methods for 2D texture synthesis to the case of
texture movies. This extension is by no means straightforward, as several important issues
must be dealt with.

The most significant difference between the two problems stems from the fundamental
difference between the temporal dimension of TVTs and the two spatial dimensions. In
a 2D texture, one cannot define a single natural ordering between different pixels in the
image: a human observer looks at all the entire image, rather than scanning the image from
left to right, or from top to bottom. Thus, thex andy dimensions of the image are treated
in the same way by 2D texture synthesis methods. In contrast, there is a clear and natural
ordering of events in a texture movie, and a human observer watches the sequence in that
order (from the first frame to the last). This indicates that the temporal dimension should
be analyzed differently from the spatial ones.

Another practical difficulty with TVT synthesis stems from the higher dimensionality of
the texture. A naive extension of the 2D filters used to analyze texture images into 3D dras-
tically increases computation time. A naive extension of the 2D synthesis methods to 3D
results in prohibitive synthesis times. Therefore, we have introduced various modifications
both in the analysis of the input, and in the synthesis of the output TVT.

Another problem is the selection of the threshold for the temporal dimension. The threshold
has a big impact on the resulting TVT, and unlike the 2D case cannot be determined by
simply viewing the TVT. In this section we present a method that automatically selects the
threshold, based on the characteristic of the input TVT, as will be explained later.

Finally, the methods that deal with 2D texture synthesis usually operate on an� n image.
However, in the texture movies case the input movie usually has dimensionsn � n � r
wherer < n. This must be properly accounted for in the analysis and synthesis stages.
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6.2 MRA Construction for Texture Movies

As explained in Section 4, the first step in our approach is the construction of a multi-
resolution analysis (MRA) of the input signal. In the case of texture movies, the input
signal is three-dimensional and hence we construct the MRA by applying a 3D wavelet
transform to the signal. The goal of this transform is to capture both spatial and temporal
characteristic features of the signal at multiple scales. Since the steerable pyramid transform
was found very well-suited for the analysis of 2D textures, our first inclination was to use a
3D variant of the steerable pyramid. However, steerable filters are non-separable and have a
wide support (the 2D steerable sub-band filters we used were9� 9). Repeated convolution
of a 3D signal with multiple9�9�9 3D filters is quite expensive: it requires2 �93 = 1458
floating point operations for each pixel in each frame. Also, designing a set of properly
constrained filters for the construction of a steerable pyramid is not a trivial task even in 2D
[21]. Finally, in the case of TVTs the signal has different characteristics along the temporal
dimension from those it exhibits in the spatial dimensions. While in the temporal dimension
there is a clear natural ordering of the frames, there is no prominent natural ordering of the
pixels in a single frame. Thus, it does not necessarily make sense to use filters that are
symmetric in all three dimensions.

We have also experimented with separable 3D wavelet transforms defined as a cartesian
product of three 1D transforms, but they failed to adequately capture the spatial constraints
between features in the TVT. The resulting sequences often exhibited strong discontinuities
and blocky appearance.

Because of the above considerations, we decided to use a 3D transform defined by a carte-
sian product between the 2D steerable transform (applied to the spatial dimensions) and an
orthonormal 1D wavelet transform (applied to the temporal dimension). Thus, our trans-
form is semi-separable: it is non-separable in 2D, but the time dimension is separable from
the other two.

6.2.1 Building the Pyramid

Assume for now that the input signalS is given as a cubic 3D array of sizen� n� n (we
shall lift this restriction in Section 6.2.2). One way to think of this 3D array is as a stack of
2D slices, where each slice is a frame in the sequence. An alternative way to think about
it is as a bundle ofn2 1D arrays, where each such array is a temporal sequence of values
corresponding to a particular location(x; y).

In order to describe the MRA construction procedure we use the notation introduced in
Section 3.3. Let� and	 denote the scaling function and the wavelet analysis filters of
the 1D wavelet transform, respectively. Each of these filters is convolved with a sequence
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Figure 11: Construction of one level of the MRA

of lengthN to produceN=2 coefficients. Let
i denote thei-th sub-band steerable filter,
which is convolved with anN �N image to produce anN �N response. Let� denote the
steerable low-pass filter, which is convolved with anN�N image to produce anN=2�N=2
low-passed image (the convolution is followed by downsampling by a factor of 2).

The construction of the MRA pyramid proceeds as follows (see Figure 11). Given a 3D
TVT we first apply once the analysis filters� and	 on then2 temporal sequencesS(x; y; �).
The asterisk symbol� is used here to denote the full range of values between 1 andn. Thus,
S(�; �; t) stands for the entiret-th frame (time slice) of the signal, whileS(x; y; �) denotes
the vector of values of the(x; y) pixel in all of the different time frames. Each temporal
sequence of lengthn is thus decomposed ton=2 scaling coefficientsS� andn=2 detail
coefficientsS	. Viewing then2 � n=2 scaling coefficients as a stack ofn=2 slices, the 2D
steerable transform is now appliedn=2 times, once on each slice. Each steerable transform
results ink sub-band responsesS
i and in a single downsampled low pass responseS�. All
of the detail coefficientsS	 and the sub-band response valuesS
i are stored as the values
of the nodes at the bottom level of the pyramid. The same procedure is then repeated again
to the downsampled low pass responses in order to compute the next level of the pyramid.
The pseudocode for this procedure is given in Figure 12.
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After constructing thè-th level of the MRA we are left withn � n � n=2 nodes for this
level and a downsampled low pass version of the signalS�(�; �; �), which is then fed again
to the same procedure to compute level` � 1, and so forth. SinceS� is downsampled by
a factor of two in each of the three dimensions, each node in level` � 1 is considered a
parent for eight nodes in level`. Eventually, we construct level` = 1, where we have four
nodes and a single value representing the low pass average of the entire sequence. This
value is stored at the root (level zero) of the tree. Thus, we obtain a tree whose root has
four children, but otherwise it has a branching factor of eight. Each internal node of the
tree contains3(k + 1) values:k subband responses and one detail coefficient for each of
the three color channels.

Input: A 3D signalS(�; �; �) of sizen� n� n

Output: a) Level` of the MRA (̀ = logn)
b) A low-passed 3D signalS�(�; �; �) of size n

2 � n
2 � n

2

Stage 1: apply 1D wavelet transforms
foreach pixel (x; y)h

S�(x; y; 1); : : : ; S�(x; y; n2 )
i
:= � (S(x; y; �))h

S	(x; y; 1); : : : ; S	(x; y; n2 )
i
:= 	 (S(x; y; �))

endfor

Stage 2: compute 2D steerable transforms
for t = 1 to n=2

foreach sub-bandi
S
i(�; �; t) := 
i(S

�(�; �; t))
endfor
S�(�; �; t) := �(S�(�; �; t))

endfor

Stage 3: assign values to nodes
for t = 1 to n=2

foreach pixel (x; y)
Level[`]:Node[x; y; t]:value[0] := S	(x; y; t)
foreach sub-bandi

Level[`]:Node[x; y; t]:value[i] := S
i(x; y; t)
endfor

endfor
endfor

Figure 12: Constructing thè-th level of the MRA
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In order for us to be able to learn the new TVT based on the MRA representation of the
input TVT, it is imperative that the3(k + 1) values stored in each tree node are responses
corresponding to the same location in the input signal. This is indeed the case in our con-
struction. We associateS	(x; y; t) andS
i(x; y; t) with the same node in the MRA. Note
thatS	(x; y; t) represents the responses of the pixels in the original frames2t � 1 and2t
at locationx; y to the temporal filter (since we subsample by a factor of two).S
i(x; y; t)
represents the responses of the same pixels to the steerable filter, since it was applied to the
scaling coefficients corresponding to the same pixels.

Since both the 1D orthonormal wavelet transform and the steerable transform are invertible,
so is our 3D transform. More precisely, given a TVT of dimensionsn=2� n=2� n=2 that
was reconstructed at level`� 1 we reconstruct level̀ in the following way: First we apply
the inverse steerable transform on each of then=2 slices of sizen=2�n=2 using the values
of the steerable subband responses that are stored in the nodes of level`. This results in
n=2 slices each of sizen � n. We now apply the inverse temporal filter using the values
of the highpass temporal filter that are stored in the nodes of this level. This results in an
n� n� n TVT. We repeat this process until we obtain a TVT of the same size as the input
one.

6.2.2 Handling Non-Cubic TVTs

The MRA construction algorithm described above assumes that the input signal has di-
mensionsn� n� n, wheren = 2m. In practice, the input TVT is typically of dimensions
n � n � r = 2m � 2m � 2q, whereq < m. For example, most of the sequences we
experimented with were256� 256� 32.

There are many possible strategies to handle non-cubic TVTs. We have experimented with
the two strategies described below.

1. Apply the 3D transform from the previous sectionq times, untilS� becomes a 2D
signal of dimensions2m�q�2m�q. The remainder of the pyramid is constructed using
only the 2D steerable transform. Thus, the resulting pyramid has branching degree 8
in its q bottom levels, and branching degree 4 in the remaining levels.

2. Apply the 2D steerable filtersm� q times to each frame, generatingm� q levels of
the steerable pyramid for each image. We are now left with a2q� 2q� 2q signal, and
apply our 3D transform to it. Thus, the resulting pyramid has branching degree 4 in
itsm� q bottom levels, and branching degree 8 in the remaining levels.

We chose to implement the second strategy. We believe that this strategy produces better
results because in the resulting tree the nodes containing both temporal and spatial response
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values are located closer to the root. Thus, all three dimensions of the sequence are taken
into account at the early stages of the learning process, i.e., when the overall structure of
the output TVT is being formed. The finer spatial details of each frame are filled in later,
without any further temporal constraints.

More specifically, when working with the second strategy using our learning algorithm, the
algorithm learnsall the dimensions at the low levels, since using the second strategy results
in a low-pass version of the TVT in its lowerq levels. This allows us to shape the overall
structure of the TVT in its lower levels. After we learn levelq, the temporal structure of
the TVT is finished and the shape of each frame is well structured. All we have to do from
now on is to fill in the details of each frame. This way, each of the three dimensions of
the TVT has influence on the output TVT from the first level. Unlike this, using the first
strategy, when learning them�q lower levels of the TVT, we are only influenced by the two
dimensional constraints. It is unclear how this structure relates to the temporal dimension
of the TVT. Since we learned the lower levels using only two dimensional constraints, it
could be that we reduced the possibility of finding a reasonable temporal extension to this
representation. This could result in a TVT with low connection between its frames, and can
cause a ’jump’ between two successive frames.
Indeed, in experiments we made, we found the second strategy to be much better, and this
is the strategy we chose to use.

6.3 Synthesis Algorithm

As mentioned in the beginning of this section, we add methods to our statistical learning
algorithm in order to deal with TVTs. We describe in this subsection two methods that
allows our algorithm to deal efficiently with TVTs. The first one is the implementation of
an automatic threshold selection for the temporal domain. The second is an improvement
to our algorithm that allows as to handle TVTs in reasonable time.

6.3.1 Threshold Selection

As described in Section 4 two paths are considered similar by our algorithm when the
differences between their values are below a certain threshold. The threshold controls the
amount of randomness in the resulting signal, and its similarity to the input. In the extreme,
too small a threshold may cause the result to be an exact copy of the input. Thus, the value
of the threshold has a large impact on the outcome. Intuitively, the thresholds used for syn-
thesizing a structured texture should be lower than those used for synthesizing unstructured
ones. This is due to the fact that in the resulting texture we would like to keep the big fea-
tures of the structured texture. Allowing a large threshold fails to preserve these features by
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incorporating random values in wrong places.

We cannot expect the user to select an appropriate threshold for the temporal dimension of
3D TVTs, because it is difficult to assess the size of the temporal features in the sequence
simply by observing it. Our technique for choosing a threshold for the temporal dimen-
sion is inspired by wavelet compression methods for images [13]. The idea behind wavelet
compression is to zero out coefficients withL1 norm less than some small numbera. This
decimation of the coefficients results in little perceptual effect on subjective image qual-
ity. By the same token, we assume that switching is permitted between coefficients whose
values are no more than2a apart. Thus, we let the user specify a percentagep. We then
compute the interval[�a; a] containingp percent of the TVTs temporal coefficients. The
temporal threshold value is then set to2a.

6.3.2 Reducing the Number of Candidates

A naive implementation of the tree synthesis algorithm described above requires the exam-
ination ofall the nodes at leveli in the original tree in order to find the maximal�-similar
paths for every nodevi on leveli in the new tree. Given an2m � 2m � 2q input TVT, in
the bottom level our algorithm has to check2m�1 � 2m�1 � 2q nodes in the new tree, so
applying the naive algorithm results in a number of checks that is quadratic in this number.
Since each node has3k values, and for each such value we check a path of lengthm � 1,
this exhaustive search makes the synthesis of high-dimensional signals impractically slow.
However, as briefly mentioned in Section 4, much of the search can be avoided by inher-
iting the candidate sets from parents to their children in the tree. Thus, while searching
for maximal�-similar paths of nodevi the algorithm must only examine the children of
the nodes in the candidate sets that were found forvi�1 while constructing the previous
level. The result is a drastic reduction in the number of candidates. The actual number of
candidates depends of course on the threshold, but in almost all cases we found that the
number is very small (between 4 and 16). In the case of our 3D TVTs we found that this
improvement reduced the synthesis time from weeks to just a few minutes.

6.4 Results

We applied the algorithms described in this work to the synthesis of two kinds of TVTs:
texture movies and sound textures. The accompanying videotape contains several examples
of both kinds. Generally, for each example we first show the synthesized movie clip several
times in a loop (sometimes accompanied by a soundtrack). Next, a side-by-side comparison
with the original clip is shown. It should be noted that all of the sounds accompanying the
synthetic movie segments on the videotape were synthesized by our algorithm.
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Waterfall See rows 1 and 2 in Figure 13. The differences between the original and synthe-
sized clips are noticeable both in the static structure of the waterfall, and in the water
flow. These differences are particularly apparent in the left hand side and at the top
of each frame.

Crowd See rows 3 and 4 in Figure 13. In this example, the videotape also shows a failed
attempt to generate a continuous sequence by synthesizing each frame independently
using a 2D texture synthesis algorithm, i.e., without temporal constraints.

Volcano See rows 5, 6, and 7 in Figure 13. Here we show two different synthesized clips.
A slow-motion side-by-side comparison is also provided on the videotape.

Sound textures We show three examples. In each example we first show the original
waveform accompanied by the corresponding sound, and then the synthesized wave-
form and sound. The sounds are: a drum beat, a baby crying, and cars in a traffic
jam. The synthesized drum beat sequence is longer than the input sample. Figure 15
shows a graphic comparison for this example. It can be seen that the two signals are
clearly different from each other, but both contain the same essential features.

Clouds See rows 1 and 2 in Figure 14.

Fire See rows 3 and 4 in Figure 14.

Jellyfish See rows 5 and 6 in Figure 14.

6.4.1 Implementation Specifics

The 1D orthonormal wavelet used for the analysis along the temporal dimension is a
Daubechies filter of length 10 [8]. For the spatial domain analysis we used the steerable
pyramid [27] with four subband filter orientations (0, 45, 90, and 135 degrees). Color is
handled by treating the red, green, and blue components separately. Thus, the values at
each node of the MRA hierarchy are vectors of length 15 in its high levels (where we ana-
lyze the TVT as a cube) and of length 12 in its lower levels. The threshold for the temporal
responses was obtained as described in Section 6.3.1 whenp was usually between 70 and
80 percent. With our current implementation we generated movies of size256� 256� 32
on a Pentium II 450MHz with 1GB of RAM. Each movie clip takes about 10 minutes to
generate.

In the case of sound textures, which are 1D signals, we built the MRA using a 1D wavelet
transform. Thus, the MRA that was obtained is a binary tree, where each node stores the
detail coefficients of the Daubechies wavelet. We used the same Daubechies filter of length
10. The threshold for the learning algorithm was computed as described in Section 6.3.1,
whenp was usually between 60 to 70 percent.
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original:

synthesized:

original:

synthesized:

original:

synth. A:

synth. B:

Figure 13: Texture movie synthesis examples. In each of the examples above, the first row
shows four frames from the original movie clip (frames 0, 7, 14, and 21), and the following
row(s) shows the corresponding frames in the synthesized clip(s). The examples are: water-
fall (rows 1–2), crowd (rows 3–4), and volcano (rows 5–7, two different synthesized clips).
While the synthesized frames are very similar to the original in their overall appearance,
pairwise comparison reveals many differences.
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Figure 14: More texture movie synthesis examples: clouds (rows 1–2), fire (rows 3–4), and
jellyfish (rows 5–6).
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Figure 15: A graphic comparison between an original drum-beat sound waveform (top) and
a synthesized one (bottom). Note that the synthesized waveform contains the same features,
but without the periodicity of the original signal.
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6.4.2 Limitations

Our algorithm stores in main memory both the MRA constructed from the input signal and
the MRA that is being generated. The resulting memory requirements are quite substantial.
Specifically, on a workstation with 1GB of RAM our implementation currently generates
short movies (32 frames at256� 256 resolution, and 128 frames at128� 128). Although
longer frame sequences can be generated by creating several short ones and concatenating
them while blending their boundary frames, this approach often introduces excessive blur
in the blended frames and does not result in a desired “typical” TVT.

As can be noticed in some of the examples on the videotape, occasional spatial and tem-
poral discontinuities can be seen. This results from the tree-based nature of the synthesis
algorithm. Neighboring spatio-temporal regions in the movie can sometimes be far apart
in the MRA tree structure. In those cases the constraints between such regions are weaker
than they should be.

Our approach assumes that the frames are filled with texture in a relatively homogeneous
manner; the method does not respond well to large changes in the size of texture features
across the frames, which can occur for example due to perspective foreshortening. Large
static objects in the field of view also interfere with successful synthesis. The method works
best when the camera appears to be stationary.
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7 Conclusions and Future Work

7.1 Summary

We have described a method, based on statistical learning and MRA construction, for gen-
erating new instances of textures from input samples. While most of the previous work in
this area has focused on the synthesis of 2D textures [38, 19, 9], our work is not limited to
such textures and it is capable of synthesizing texture movies and sound textures as well.
In the case of 2D textures our algorithm can also produce a texture that is a mixture of
several input textures. This new texture is statistically similar to all of the input samples
and it exhibits a mixture of their features.

Our experiments demonstrate that the algorithm is robust, and works on a large variety of
textures. From the same input, we can generate many different textures. For 1D and 2D tex-
tures our algorithm is able to produce textures of different sizes from a small input texture.
A variation of the same method is used to produce mixed 2D textures that simultaneously
capture the appearance of a number of different input textures. The ability to produce such
mixes will undoubtedly enhance the creative abilities of artists and graphics designers. Ex-
amples of synthesized and mixed 2D textures can be found at
http://www.cs.huji.ac.il/˜zivbj/textures/textures.html

The major contribution of this work is the texture movie synthesis algorithm. To our knowl-
edge, there have not been any previous attempts towards statistical learning of TVTs from
input samples. So far, synthesis of dynamic natural phenomena has mostly been possible
only via computationally intensive physically based simulations. Such simulations are for
the most part expensive and, more importantly, the resulting animations can be difficult
to control. In contrast, our statistical learning algorithm for TVTs is extremely general,
automatic, and fast alternative, provided that an example of the desired result is available.

There are many possible applications to such a technique in the field of special effects and
movie animation. Our algorithm can save a lot of money to movie producers by allowing
them to film small scenes with a few people, and then combine many synthesized versions
of this scene to create a scene with many people. Since our algorithm produces many dif-
ferent output movies from the same input one, the audience will not get the feeling that
this scene is a tiling of many small ones. Another possible application is the filming of
one explosion, and producing many different explosions from this one. Those synthesized
explosions can be placed at different scenes in the movie without repeating the same ex-
plosion twice. Another possible use is the combination of synthesizing scenes using our
algorithm, and synthesizing the sound track for those scenes using our 1D synthesis al-
gorithm (as demonstrated in the accompanying videotape). All these possibilities give a
powerful tool in the hand of a special effects director, and can help in producing better
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movies at less time and lower costs.

7.2 Directions for Future Work

The methods described in this work are just the first step towards building a complete
system for automatic generation of special effects from examples. There are many ways to
further enhance and extend our approach.

Longer movies.At present, our algorithm produces movie clips of the same length as the
input clip. Longer clips can be generated by concatenating their MRA trees, but this often
results in a temporal discontinuity. Thus, a more drastic change in the algorithm is needed
in order to be able to generate arbitrarily long frame sequences. We would like to develop
an algorithm capable of adding more frames to a prefix frame sequence that has already
been computed, without having to construct the entire MRA tree of the longer sequence.

Full integration of sound and picture.Currently, the synthesis of the movie and its sound-
track are completely independent. We would like to extend our algorithms to take into
account constraint between these two modalities, and to synthesize them in a synchronized
fashion.

Movie mixing. It should be possible to extend the technique for 2D texture mixing de-
scribed in Section 5.2 to generation of “movie mixtures”.

Classification.Methods for statistical learning of 2D texture images have been successfully
applied not only to texture generation, but also to texture recognition and image denois-
ing [11]. These applications are made possible by realizing that the statistical learning of
2D textures implicitly constructs a statistical model describing images of a particular class.
Similarly, our approach for TVT generation can be used as a statistical model suitable for
describing TVTs. Therefore, it should be possible to apply this statistical model for tasks
such as classification and recognition of such movie segments.
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