
Texture Mixing and Texture Movie Synthesis using
Statistical Learning

Ziv Bar-Joseph Ran El-Yaniv Dani Lischinski Michael Werman

Institute of Computer Science
The Hebrew University, Jerusalem 91904, Israel

E-mail: fzivbj,ranni,danix,werman g@cs.huji.ac.il

Abstract

We present an algorithm based on statistical learning for synthesizing static and time-varying tex-
tures matching the appearance of an input texture. Our algorithm is general and automatic, and it
works well on various types of textures including 1D sound textures, 2D texture images and 3D
texture movies. The same method is also used to generate 2D texture mixtures that simultaneously
capture the appearance of a number of different input textures. In our approach, input textures are
treated as sample signals generated by a stochastic process. We first construct a tree representing
a hierarchical multi-scale transform of the signal using wavelets. From this tree, new random trees
are generated by learning and sampling the conditional probabilities of the paths in the original tree.
Transformation of these random trees back into signals results in new random textures. In the case
of 2D texture synthesis our algorithm produces results that are generally as good or better than those
produced by previously described methods in this field. For texture mixtures our results are better
and more general than those produced by earlier methods. For texture movies, we present the first
algorithm that is able to automatically generate movie clips of dynamic phenomena such as water-
falls, fire flames, a school of jellyfish, a crowd of people, etc. Our results indicate that the proposed
technique is effective and robust.

1 Introduction

Texture synthesis is an interesting and important problem in the field of computer graph-
ics. Recently, several techniques have emerged in the computer graphics literature that are
able to analyze an input texture sample and synthesize many new random similar-looking
textures [8, 18, 34]. This work extends these techniques in several important ways. First,
we describe a newtexture mixingalgorithm — a statistical learning algorithm that operates
on several differentinput texture samples to synthesize a new texture. This new texture is
statistically similar to all of the input samples and it exhibits a mixture of their features.
Second, we extend our approach from the domain of static textures to the domain oftexture
movies: dynamic, time-varying textures, or TVTs for short. More specifically, we present a
technique capable of generating a sequence of frames, corresponding to temporal evolution

of a natural texture or pattern, that appears similar to an input frame sequence. For example,
using this technique we generated short movies of dynamic phenomena, such as waterfalls,
fire flames, a school of jellyfish, turbulent clouds, an erupting volcano, and a crowd of peo-
ple. The generated sequences are distinguishable from the original input sample, yet they
manage to capture the essential perceptual characteristics and the global temporal behavior
observed in the input sequence. A specialized version of this method, described in a sep-
arate paper [1], is able to synthesize 1Dsound textures, such as sounds of traffic, water,
etc.

The natural applications of texture movie synthesis are in special effects for motion pic-
tures and television, computer-generated animation, computer games, and computer art.
Our method allows its user to produce many different movie clips from the same input
example. Thus, a special effects technical director could fill an entire stadium with ecstat-
ic fans from a movie of a small group, or populate an underwater shot with schools of
fish. Designers of 3D virtual worlds will be able to insert animations of clouds, smoke,
and water from a small number of input samples, without ever repeating the same anima-
tion in different places. However, these are by no means the only applications of such a
technique. For example, methods for statistical learning of 2D texture images have been
successfully applied not only to texture synthesis, but also to texture recognition and image
denoising [10]. These applications are made possible by realizing that statistical learning of
2D textures implicitly constructs a statistical model describing images of a particular class.
Similarly, our approach for learning TVTs can be used as a statistical model suitable for
describing TVTs. Therefore, it should be possible to apply this statistical model for tasks
such as classification and recognition of such movie segments.

1.1 Related Work

Most previous work in texture synthesis has focused on the development of procedural
textures, where complex interesting patterns are produced by a program executed before
or during the shading process[14, 22, 30, 31, 32]. Although some of the most compelling
synthetic imagery has been produced with the aid of procedural textures, the disadvantage
of this approach is that it can be difficult to control and/or predict the outcome of such
shaders. Furthermore, there is no general systematic way of generating textures matching
the appearance of a particular texture. The latter difficulty gave rise to several algorithms
that analyze an input texture and synthesize new random similar-looking textures [8, 18,
34]. Our work can be viewed as extensions of De Bonet’s approach [8] to multiple input
samples and to time-varying textures.

Texture mixing, a process of generating a new texture that contains features from several
different input textures, has been addressed in several previous works. Burt and Adelson [5]
produce smooth transitions between different textures by weighted averaging of the Lapla-
cian pyramid coefficients of the textures. This technique is very effective for seamless im-
age mosaicing, but is less suitable for producing a mix of textures across the entire image,
as will be demonstrated in section 5.2. Heeger and Bergen [18] use their histogram-based

2

texture synthesis algorithm to generate texture mixtures in which the color comes from one
texture, while the frequency content comes from another. In this work we produce different
kinds of mixtures, in which both colors and frequencies are mixed together.

To our knowledge, there have not been any previous attempts towards statistical learning
of TVTs from input samples. So far, synthesis of dynamic natural phenomena has mostly
been possible only via computationally intensive physically based simulations. For exam-
ple, steam, fog, smoke, and fire have been simulated in this manner [15, 13, 27, 28]. Explo-
sions, fire, and waterfalls have been successfully simulated by animated particle systems
[23, 24, 26]. Simplified physically-based models have also been used to produce synthetic
waves and surf [17, 21]. While the techniques mentioned above have been able to generate
impressive results of compelling realism, a custom-tailored model must be developed for
each type of simulated phenomena. Furthermore, such simulations are for the most part
expensive and, more importantly, the resulting animations can be difficult to control. In
contrast, as we shall see, statistical learning of TVTs is an extremely general, automatic,
and fast alternative, provided that an example of the desired result is available.

Heeger and Bergman [18] applied their texture synthesis technique to the generation of
3D solid textures (in addition to 2D texture images). However, in a solid texture all three
dimensions are treated in the same manner, whereas in a 3D TVT the temporal dimension
must be treated differently from the two spatial dimensions, as shall be explained in the
next section. Another difference between their work and ours is that their method learns
the statistical properties of a 2D texture and then generates a 3D texture with the same
properties, whereas our method analyzes a 3D signal (TVT) directly.

1.2 Overview of Approach

Texture images are examples of approximately stationary 2D signals. We assume such
signals to be generated by stochastic processes. This paper introduces a new approach for
the statistical learning of such signals:

1. Obtain one or more training samples of the input signals.

2. Construct a hierarchical multi-resolution analysis (MRA) of each signal sample.
Each MRA is represented as a tree, assumed to have emerged from an unknown
stochastic source.

3. Generate a new random MRA tree by statistically merging the MRA trees of the
input samples.

4. Transform the newly generated MRA back into a signal, yielding a new texture that
is statistically and perceptually similar to each of the inputs, but at the same time
different from them.

3

Note that the procedure outlined above is applicable to generaln-dimensional signals, al-
though it is practical only for small values ofn (since its time and space complexities are
exponential inn).

Since the tree merging algorithm in stage 3 above involves random sampling, each invo-
cation of the algorithm results in a different output texture. Thus, many different textures
can be produced from the same input. If all of the input samples are taken from the same
texture, we obtain a 2D texture synthesis algorithm similar to that of De Bonet [8]. If the
input samples come from different textures, the result is a mixed texture.

A naive extension of the above approach to generation of TVTs would be to independent-
ly synthesize a new frame from each frame in the input sequence. However, this method
fails to capture the temporal continuity and features of the input segment. In contrast, the
approach presented in this paper is to synthesize all three dimensions of the TVT simulta-
neously.

As in the 2D texture case, we assume that a time-varying texture is generated by a stochastic
process. It is a 3D signalS(x, y, t), wherex andy are the spatial coordinates of the signal
(pixel coordinates in each frame), andt is the temporal coordinate (frame number). By
applying the approach outlined above to 3D signals, with an appropriately chosen MRA
scheme, we obtain a statistical learning algorithm for TVTs.

1.3 Discussion

The current work extends previous methods for 2D texture synthesis to the case of texture
movies. This extension is by no means straightforward, as several important issues must be
dealt with.

The most significant difference between the two problems stems from the fundamental
difference between the temporal dimension of TVTs and the two spatial dimensions. In
a 2D texture, one cannot define a single natural ordering between different pixels in the
image: a human observer looks at the entire image, rather than scanning the image from
left to right, or from top to bottom. Thus, thex andy dimensions of the image are treated
in the same way by 2D texture synthesis methods. In contrast, there is a clear and natural
ordering of events in a texture movie, and a human observer watches the sequence in that
order (from the first frame to the last). This indicates that the temporal dimension should
be analyzed differently from the spatial ones.

Another practical difficulty with TVT synthesis stems from the higher dimensionality of
the texture. A naive extension of the 2D analysis filters into 3D drastically increases the
MRA construction time. Moreover, a naive extension of the 2D synthesis technique into 3D
results in prohibitive synthesis times. Therefore, we have introduced various modifications
both in the analysis and the synthesis stages of TVTs.

Finally, the methods that deal with 2D texture synthesis usually operate on ann� n image.
However, in the texture movies case the input movie usually has dimensionsn�n�r where

4

r < n. This must be properly accounted for in the analysis and synthesis stages.

Overview of the paper

The rest of this paper is organized as follows. In the next two sections (2 and 3) we review
the mathematical background necessary for the detailed exposition of our approach. Section
4 presents the multiple source statistical learning algorithm. In Section 5 we demonstrate
the application of our algorithm to 2D texture synthesis and texture mixing. In Section 6
we describe the extension of our algorithm to the synthesis of TVTs. Section 7 concludes
this work and offers directions for future work.

2 Statistical Learning

We first informally define and explain a few terms needed for our discussion. One of the
main tasks instatistical learningis the estimation of an unknown stochastic source given
training examples, which aresamplesfrom the source. For instance, a sample can be a
sequence of frames of a movie, a texture image, a sound segment, etc. Statistical learning
aims to construct a statistical model of the source that not only fits the given samples but
generalizes to generate previously unseen ones. Generalization is a key issue in learning. A
model with good generalization can generate new random samples with a probability dis-
tribution that resembles that of the unknown source. Generating such new random samples
is referred to assampling the model.

Our basic assumption is that multi-dimensional signals such as 2D texture images and 3D
TVTs are random samples of an unknown stochastic source. Our goal is to learn a statistical
model of this source given a small set of training examples.

Consider signal sampless1, s2, : : : , sk where each of thesi is assumed to emerge from a
stochastic sourceSi. Although the sourcesSi are unknown we assume thatsi is a typical
example conveying the essential statistics of its source. Our task is to estimate the statistics
of a hypothetical sourceZ = Z(S1, : : : , Sk) called themutual sourceof S1, : : : , Sk. Intu-
itively, the sourceZ is the “closest” (in a statistical sense) to all theSi simultaneously (see
Appendix for a precise definition). After learning the mutual sourceZ, we can sample it
in order to synthesize “mixed” signals that are statistically similar to each of the sources
Si (and the examplessi). In the special case where the sampless1, : : : , sk originate from
the same sourceS (that isS = S1 = � � � = Sk), the mutual sourceZ is exactlyS and when
we sample fromZ we synthesize new random examples that resemble each of the given
examplessi.

A key issue when modeling, analyzing, and learning signals is the choice of their repre-
sentation. For example, a 1D signal can be represented directly by a sequence of values.
Alternatively, it can be represented in the frequency domain via the Fourier transform.
These two representations are very common for modeling 1D and 2D signals and there
are various, well established approaches to estimating the underlying unknown source with

5

respect to such representations (see e.g. [4, 20]). Although such representations have been
successfully used in many application domains, they are not adequate for representation and
analysis of “textural signals” such as the ones treated in this paper. Such signals typically
contain detail at different scales and locations. Many recent research efforts suggest that a
better representation for such signals are multi-resolution structures, such as wavelet-based
representations (see e.g. [2, 33]). Bassevilleet al.[3, 2] provide a theoretical formulation
of statistical modeling of signals by multi-resolution structures. In particular, these results
consider a generative stochastic source (that can randomly generate multi-resolution struc-
tures), and study their statistical properties. They show that stationary signals (informally, a
signal is stationary if the statistics it exhibits in a region is invariant to the region’s location)
can be represented and generated in a hierarchical order, where first the coarse, low reso-
lution details are generated, and then the finer details are generated with probability that
only depends on the already given lower resolution details. In particular, hierarchical rep-
resentation was successfully applied to modeling the statistics of two-dimensional textures
[8, 10].

The assumption that the signal is emitted from a stationary source entails that its pyramidal
(tree) representation exhibits the following property. All the paths from the root to all nodes
of the same level have the same distribution and any such path can be effectively modeled
via a finite order stochastic process. We adopt this view and develop an algorithm that learns
the conditional distributions of a source. We transform the sample to its multi-resolution,
tree representation and learn the conditional probabilities along paths of the tree, using an
estimation method for linear sequences. Thus, the problem is reduced to one of learning
statistical sources of sequences, which are simply paths in the representing tree.

The particular estimation algorithm for sequences we chose to use is an extension of the
algorithm due to El-Yanivet al. [16], which operates on sequences over a finite alphabet,
rather than on real numbers. Given a sample sequenceS, this algorithm generates new
random sequences which could have been generated from the source ofS. In other words,
based only on the evidence ofS, each new random sequence is statistically similar toS. The
algorithm generates the new sequence without explicitly constructing a statistical model for
the source ofS. This is done as follows: suppose we have generatedsi, the firsti symbols
of the new sequence. In order to choose the next, (i + 1)-st symbol, the algorithm searches
for the longest suffix ofsi in S. Among all the occurrences of this suffix inS, the algorithm
chooses one such occurrencex uniformly at random and chooses the next symbol ofsi to
be the symbol appearing immediately afterx in S. This algorithm has been adapted to work
on paths of tree representations, i.e., sequences of vectors of real numbers, as described in
Section 4.

3 Wavelets and Steerable Pyramids

Wavelets have become the tool of choice in analyzing single and multi-dimensional sig-
nals, especially if the signal has information both at different scales and localizations. The

6

fundamental idea behind wavelets is to analyze the signal’s local frequency at all scales
and locations, using a fast invertible hierarchical transform. Wavelets have been effectively
utilized in many different fields. A comprehensive review of wavelets applied to computer
graphics can be found in a book by Stollnitz, Salesin, and DeRose [29].

A wavelet representation is a multi-scale decomposition of the signal and can be viewed as
a complete tree, where each level stores the projections of the signal, with the wavelet basis
functions of a certain resolution (at all possible translations of the basis functions).

In this work we use two different types of wavelets: the Daubechies wavelets [7] and the
steerable pyramid[25]. The steerable pyramid transform is used to analyze 2D texture
images and the spatial dimensions of texture movies. Daubechies wavelets are used to ana-
lyze the TVT’s temporal dimension. Thus, for sound textures we use only the Daubechies
wavelets, and for 2D textures we use only the steerable pyramid (as described in Section
5). For texture movies we use a combination of both transforms as described in Section 6.

The Daubechies wavelet is a one-dimensional wavelet that produces a series of coefficients
that describe the behavior of the signal at dyadic scales and locations. The Daubechies
wavelet transform is computed as follows: Initially, the signal is split into lowpass/scaling
coefficients by convolving the original signal with a lowpass/scaling filter (denoted in this
paper by�) and the wavelet/detail coefficients are computed by convolving the signal using
a Daubechies wavelet filter (denoted). Both responses are subsampled by a factor of 2,
and the same filters are applied again on the scaling coefficients, and so forth.

The steerable pyramid is a multi-scale, multi-orientation linear signal decomposition. This
wavelet has several superior properties compared to traditional orthonormal wavelets, espe-
cially with respect to translation and rotation invariance, aliasing and robustness due to its
nonorthogonality and redundancy. The steerable filter is produced as follows: Initially, the
signal is split into low and highpass subbands. The lowpass subband is then split into a set
of k oriented bandpass subbands usingk oriented filters (denoted in this paper by
i) and
a new lowpass subband is computed by convolving with a lowpass filter (denoted�). This
lowpass subband is subsampled by a factor of 2 in each direction and the resulting subsam-
pled signal is processed recursively. Simoncelliet al.[25] provide a detailed exposition on
steerable pyramids and further references.

A wavelet representation can be transformed back into the original signal using a fast hier-
archical inverse transform. The computation proceeds from the root of the tree down to the
leafs, using filters that are complementary to those used in the wavelet transform.

4 Statistical Learning Algorithm

In this section we describe a general algorithm for sampling the most likely mutual source
of stationaryn-dimensional signals. Section 5 describes the specialization of this algorithm
to the tasks of synthesizing and mixing 2D textures. Section 6 describes the extensions
necessary for applying this algorithm to TVT synthesis.

7

The outline of our approach is as follows: givenk n-dimensional signals as input we con-
struct a 2n-ary tree representing the wavelet-based multi-resolution analysis (MRA) of each
signal. From the point of view of our synthesis algorithm, each signal is now encoded as
a collection of paths from the root of the tree towards the leaves. It is assumed that all the
paths in a particular tree are realizations of the same stochastic process. The task of the
algorithm is to generate a tree whose paths are typical sequences generated by the most
likely mutual source of the input trees. From the resulting tree, a newn-dimensional signal
is reconstructed by applying a process inverse to the MRA.

Tree merging.Givenk source signals represented by their MRA treesT1, : : : , Tk with cor-
responding priors (weights)�1, : : : ,�k, such that

P
�i = 1, our algorithm generates a new

tree by merging together paths present in the source trees. The algorithm is described in
pseudocode in Figure 1. The generation of the new tree proceeds in breadth-first order (i.e.,
level by level). First, we randomly select one of the input treesTi (according to the given
priors). The root value ofTi along with the values of its children are copied intoT. Now, let
us assume that we have already generated the firsti levels of the tree. In order to generate
the (i + 1)-st level we need to assign values to 2n children nodes of each node in leveli.
Let xi be a value of such a node, and denote byxi�1, xi�2, : : : , x1 the values of that node’s
ancestors along the path towards the root of the tree. The algorithm searches thei-th lev-
el in each of the source trees for nodesyi with the maximal length�-similar path suffixes
yi, yi�1, : : : , yj, where� is a user-specified threshold andi � j � 1. Two paths are consid-
ered�-similar when the differences between their corresponding values are below a certain
threshold. This computation occurs in the routineCandidateSetin Figure 1. One of these
candidate nodes is then chosen and the values of its children are assigned to the children of
nodexi. In this way a complete new tree is formed.

Improvements.The tree merging algorithm described above requires the examination of
k2ni paths in order to find the maximal�-similar paths, for each of the 2ni nodesxi on level
i. However, most of the computation can be avoided by inheriting the candidate sets from
parents to their children in the tree. Thus, while searching for maximal�-similar paths of
nodexi the algorithm only examines the children of the nodes in the candidate sets that
were found forxi�1 while constructing the previous level. This improvement is especially
important in the case of the 3D texture movies, as described in more detail in section 6.

4.1 Synthesizing Textures of Arbitrary Dimensions

The algorithm described above constructs an output treeT of the same size as the input
treesT1, : : : , Tk. It is easy to construct a larger (deeper) output tree as follows. Letd be the
depth of the input trees. In order to construct an output tree of depthd + 1 we first use our
merging algorithm 2n times to compute 2n new trees. The roots of those trees are then fed
as a low resolution version of the new signal to the MRA construction routine, which uses
those values to construct the new root and the first level of the new MRA hierarchy.

In this manner it is possible to generate 1D sound textures of arbitrary length from a short

8

Input: Source treesT1, : : : , Tk, priors�1, : : : ,�k, threshold�
Output: A treeT generated by a mutual source ofT1, : : : , Tk

Initialization:
Randomly chooseTi according to the priors�1, : : : ,�k

Root(T) := Root(Ti)
Childj(T) := Childj(Ti) for j = 1,: : : , 2n

Breadth-First Construction:
for i = 1 tod � 1 (whered is the depth of the source trees):

foreach nodexi on leveli of T
foreach j = 1 tok

Cj := CandidateSet(Tj, i, xi , �)
Randomly choose a nodeyij from setCj

endfor
foreach j = 1 tok

�j := �j jCj jPk
`=1

�`jC`j
(jCjj is the size of the setCj)

endfor
Choosej according to the distribution� = f�jg
Copy the values of the children ofyij to those ofxi

endfor
endfor

procedure CandidateSet(Tj , i, xi , �)
Let x1, x2, � � � , xi�1 be the ancestors ofxi

foreach nodeyi on leveli of Tj

Let y1, y2, � � � , yi�1 be the ancestors ofyi

L[yi] := 0, sum := 0
for ` = i to 1

sum + = (x` � y`)2

if sum
i�`+1 < � then L[yi]++ elsebreak

endfor
endfor
M := maxyi L[yi]
return the set of all nodesyi such thatL[yi] == M

Figure 1 Then-dimensional tree-merging algorithm

9

input sample of the sound. The same is true for our 2D texture synthesis algorithm. From
a small input 2D texture we can synthesize a much larger texture (as will be demonstrated
in Section 5). However, in the case of 3D TVTs, this approach often results in a noticeable
temporal discontinuity.

4.2 Threshold Selection

The threshold� is used in our algorithm as a measure of similarity. Recall that in the original
suffix learning algorithm [16], the linear sequences contain discrete values. In order to
extend the algorithm to sequences of continuous values we use the following similarity
criterion. Two paths from nodesx andy to the root of the MRA tree are considered similar
if the difference between their values (at each corresponding node along the suffix of length
m of the path) are below a certain threshold. If two paths are similar, we can continue one
with values from the other, while still preserving the fact that they emerged from the same
stochastic source as shown in [16]. In our implementation of this algorithm we use level-
dependent similarity criteria for tree paths. Specifically, lower resolution levels of the tree
have looser similarity criteria than higher resolution levels, and therefore a larger threshold
is used at lower levels. This adaptive measure was chosen because the human visual system
is more sensitive to high frequency information.

The selection of the threshold has a big impact on the outcome of the algorithm. Selecting
a larger threshold causes the outcome to differ more strongly from the input (the actual
difference depends on the type of the input sample, as well as on the value of the threshold).
On the other hand, a small threshold can cause the outcome to be a copy of the input. Thus,
by leaving the threshold selection to the user, the user is supplied with a powerful tool to
achieve the desired outcome. Usually, the thresholds used for synthesizing structured 2D
textures are lower than the ones used for synthesizing unstructured textures. This is due to
the fact that in the resulting texture we would typically like to retain the large features of
the structured texture. Allowing for too large a threshold in such a texture can “break” such
features by incorporating random values in wrong places. In the case of texture movies
however, selecting the threshold can prove to be a difficult task, since it is harder for the
user to assess the scale of the structure present in the temporal dimension of the sequence.
We address this problem in Section 6, and show how to automatically choose the threshold
in this case.

5 2D Texture Synthesis and Mixing

In this section we describe the application of our statistical learning algorithm to the task
of synthesizing and mixing 2D textures and discuss the differences between our algorithm
and that of De Bonet [9, 8, 10].

10

input texture synthesized texture

Figure 2 Texture synthesis examples. The synthesized textures are four times larger than
the input ones. As described in Section 4, these larger textures were generated by applying
our algorithm four times on the same input. Because our algorithm generates a different
texture each time, the enlarged texture does not appear tiled.

11

5.1 Texture Synthesis

As explained in the previous section, our statistical learning algorithm begins by construct-
ing an MRA representation for each input sample of the signal. The MRA representation
we use to analyze 2D textures is the steerable pyramid [25] described in Section 3 with
four subband filter orientations (0, 45, 90, and 135 degrees). Color is handled by treating
each of the three (red, green, and blue) channels separately. Thus, each node in the MRA
tree contains a vector of length 12 (4 filter responses for each of 3 color channels). To ob-
tain thek input trees for our tree merging algorithm, we selectk large regions in the input
texture (overlapping and slightly shifted with respect to each other). A steerable pyramid is
then constructed for each region, yieldingk MRA trees. The trees are assigned equal priors
of �i = 1=k. In practice, we found that two or three regions are sufficient for satisfactory
results. Our learning algorithm uses these trees to generate a new random MRA tree, which
is then transformed back into a 2D image.

Three different examples of textures synthesized by our algorithm are shown in Figure 2.
Each row shows a pair of images: the left image is the original texture from which the
source trees were generated, and the right image is a synthetic texture, larger than the
source by a factor of two in each dimension. Additional examples can be found at:
http://www.cs.huji.ac.il/˜zivbj/textures/textures.html

5.2 Texture Mixing

Texture mixing is a process of generating a new texture that contains features present in sev-
eral different input textures. Our statistical learning algorithm can be used to mix textures
in new creative and interesting ways. Instead of feeding the algorithm with several sam-
ples of the same texture, we provide it with samples of several different textures. Since our
algorithm produces a new MRA tree by sampling the mutual source ofall the input trees,
the resulting texture exhibits features from all the input textures. Note that this method is
different from simply averaging the transform coefficients, since each value comes from
exactly one input tree. This allows the algorithm to produce a texture that has features from
all input textures, while the merging still looks natural (due to the constraints imposed by
the statistical learning algorithm). Figure 3 demonstrates the differences between simple
texture blending (3a), blending of MRA coefficientsa la Burt and Adelson [5] (3b), and
our technique (3c). Two additional texture mixing examples are shown in Figure 4.

The following problem may arise during texture mixing. When the input textures are very
different from each other, the algorithm tends to “lock on” to one of the input trees very
early. As a result, starting from a high level node in the generated MRA its entire sub-
tree comes from only one input texture. The result is a large non-mixed area in the output
image. A possible solution to this problem is to increase the threshold, relaxing the simi-
larity constraints on the path continuations. However, this solution often results in a blurry
outcome.

In order to solve the locking problem we try to allow at least one candidate from each input

12

(a) simple blend (b) multi-resolution blend

texture A (c) mixed texture texture B

Figure 3 Several different ways of mixing texture A (bottom left) with texture B (bottom
right). The top row shows two different blends of A and B: image (a) was obtained by a
simple blend of the two textures; image (b) was obtained by blending the coefficients of
the multi-resolution transforms of A and B. Compare these blends with the mixed texture
(c) produced by our algorithm. In (c) one can discern individual features from both input
textures, yet the merging appears natural.

13

texture A mixed texture texture B

texture A mixed texture texture B

Figure 4 More texture mixing examples. Note that in the mixed textures one can discern
individual features from both input textures, yet the merging appears natural, as opposed
to blending or averaging of features.

14

tree to participate when selecting the continuation of a path in the synthesized tree high
levels. In order to still be able to preserve strong large features we compute and store in
each node of the input trees the cumulative sum of absolute values along the path from the
root to that node. This value tends to be large in areas where a strong edge feature is found.
When choosing among different candidates, we increase the probability of a candidate
according to the magnitude of its cumulative sum.

More specifically, we modify our algorithm as follows. When looking for candidates to
continue a nodex we make sure that there is a non-empty candidate set for each of the
input trees (the threshold is increased until the candidate set becomes non-empty). A single
candidate is uniformly chosen from each candidate set, as before. Now, instead of choosing
among these candidates based on the distribution� = f�jg, we choose the candidate with
the highest cumulative sum.

Note that this modified method prefers learning from input tree nodes supporting regions
in the texture that exhibit a strong global structure. This is so, because in such regions the
steerable filter has a strong response onemphall levels. In smoother regions any of the input
textures can be learned. For example, in a brick wall the edges between the bricks will be
learned from the brick texture, while the texture inside the bricks might come from other
less structured textures.

5.3 Comparison With De Bonet’s Algorithm

As mentioned earlier the application of our algorithm to the task of 2D texture synthesis is
similar to De Bonet’s method [9]. However, there are in fact several important differences
between the two approaches. After explicitly stating our algorithm, we can now explain
those differences in detail.

The most important distinguishing feature of our algorithm is that our tree merging routine
takes several texture samples as input and constructs a texture that could have been pro-
duced by a mutual source of the input samples. In contrast, De Bonet’s algorithm operates
on a single texture sample. Using several input samples makes our algorithm more robust
and less sensitive to the position of specific features in the input texture. Another practical
implication of this difference is that our approach enables us not only to generate textures
similar to the input one, but also to synthesize mixtures of different textures, as illustrated
in Section 5.2. It should be noted that De Bonet and Viola briefly mention the possibility
of extending their approach to multiple input examples [11].

A second difference is that when our algorithm generates leveli tree nodes, we are actually
looking at nodes in leveli�1. For each such nodex we are looking for nodes in the analysis
pyramids (in the same leveli � 1) that have paths similar tox. Once we choose a candidate
nodex0 from this set, we copy the values ofall the children nodes ofx0 to the children nodes
of x. Since, according to our algorithm,x andx0 have the same stochastic source, we would
like to imitate this source when generating leveli values, thus generating all the children
values together. In contrast, when De Bonet’s algorithm generates leveli nodes, each node

15

in that level is generated separately and independently of its siblings. This can result in
more discontinuities in the synthesized texture.

A third difference between our approach and De Bonet’s is in the selection of the candidates
from which a continuation of a nodex is chosen. In both methods, candidates are chosen
based on similarity between paths in the tree. De Bonet’s method always considers the
entire path from the root of the tree to the candidate node. In contrast, our method looks
for the�-similar paths of maximal length, including those that do not reach all the way up
to the root. Thus, it is possible to choose nodes with paths that do not have similar values
in the top levels, but only in the lower levels. As a result, we consider more candidates,
allowing for a more varied texture.

In practice, the results produced by our synthesis algorithms are of comparable quality to
those provided by De Bonet on his web pages1.

6 Synthesis of Time-Varying Textures

6.1 MRA Construction

As explained in Section 4, the first step in our approach is the construction of an MRA
tree of the input signal. In the case of texture movies, the input signalS(x, y, t) is three-
dimensional and hence we construct the MRA by applying a 3D wavelet transform to the
signal. The goal of this transform is to capture both spatial and temporal characteristic
features of the signal at multiple scales. Since the steerable pyramid transform was found
very well-suited for the analysis of 2D textures, our first inclination was to use a 3D variant
of the steerable pyramid. However, steerable filters are non-separable and have a wide
support (the 2D steerable sub-band filters we used were 9� 9). Repeated convolution of a
3D signal with multiple 9� 9 � 9 3D filters is quite expensive: it requires 2� 93 = 1458
floating point operations for each pixel in each frame. Also, designing a set of properly
constrained filters for the construction of a steerable pyramid is not a trivial task even in 2D
[19]. Finally, in the case of TVTs the signal has different characteristics along the temporal
dimension from those it exhibits in the spatial dimensions. While in the temporal dimension
there is a clear natural ordering of the frames, there is no prominent natural ordering of the
pixels in a single frame. Thus, it does not necessarily make sense to use filters that are
symmetric in all three dimensions.

We have also experimented with separable 3D wavelet transforms defined as a cartesian
product of three 1D transforms, but they failed to adequately capture the spatial constraints
between features in the TVT. The resulting sequences often exhibited strong discontinuities
and blocky appearance.

Because of the above considerations, we decided to use a specially designed 3D transform
defined by a cartesian product between the 2D steerable transform (applied to the spatial

1http://www.ai.mit.edu/˜jsd/Research/Synthesis/SPSynth

16

Values for
the nodes in
this level

n frames

n

n

n/2 frames

Output

Ψ
Φ

Θ

Ω

Ω

1

n/2 frames

n

n

n/2

n/2 k

n/2 frames

n

n

n/2 frames

n

n

n/2 frames

n

n

 Input for next level

Input

Θ −

Φ −

Ω −

 1D wavelet analysis filter

i

 1D scaling function analysis filter

Ψ −
 2D low pass steerable filter

2D sub-band pass steerable filter

Figure 5 Construction of one level of the MRA

dimensions) and an orthonormal 1D wavelet transform (applied to the temporal dimension).
Thus, our transform is semi-separable: it is non-separable in 2D, but the time dimension is
separable from the other two.

Building the Pyramid

Assume for now that the input signalS is given as a cubic 3D array of sizen� n� n (we
shall lift this restriction in Section 6.2). One way to think of this 3D array is as a stack of
2D slices, where each slice is a frame in the sequence. An alternative way to think about
it is as a bundle ofn2 1D arrays, where each such array is a temporal sequence of values
corresponding to a particular location (x, y).

In order to describe the MRA construction procedure we use the notation introduced in
Section 3. Let� and	 denote the scaling function and the wavelet analysis filters of the
1D wavelet transform, respectively. Each of these filters is convolved with a sequence of
lengthN to produceN=2 coefficients. Let
i denote thei-th sub-band steerable filter, which
is convolved with anN�N image to produce anN�N response. Let� denote the steerable
low-pass filter, which is convolved with anN � N image to produce anN=2 � N=2 low-
passed image (the convolution is followed by downsampling by a factor of 2).

The construction of the MRA pyramid proceeds as follows (see Figure 5). Given a 3D TVT
we first apply once the analysis filters� and	 on then2 temporal sequencesS(x, y,�). The

17

asterisk symbol� is used here to denote the full range of values between 1 andn. Thus,
S(�,�, t) stands for the entiret-th frame (time slice) of the signal, whileS(x, y,�) denotes
the vector of values of the (x, y) pixel in all of the different time frames. Each temporal
sequence of lengthn is thus decomposed ton=2 scaling coefficientsS� and n=2 detail
coefficientsS	. Viewing then2 � n=2 scaling coefficients as a stack ofn=2 slices, the 2D
steerable transform is now appliedn=2 times, once on each slice. Each steerable transform
results ink sub-band responsesS
i and in a single downsampled low pass responseS�. All
of the detail coefficientsS	 and the sub-band response valuesS
i are stored as the values
of the nodes at the bottom level of the pyramid. The same procedure is then repeated again
on the downsampled low pass responses in order to compute the next level of the pyramid.
The pseudocode for this procedure is given in Figure 6.

Input: A 3D signalS(�,�,�) of sizen� n� n

Output: a) Level` of the MRA (̀ = logn)
b) A low-passed 3D signalS�(�,�,�) of size n

2 �
n
2 �

n
2

Stage 1: apply 1D wavelet transforms
foreach pixel (x, y)h

S�(x, y, 1),: : : , S�(x, y, n
2)
i

:= � (S(x, y,�))h
S	(x, y, 1),: : : , S	(x, y, n

2)
i

:= 	 (S(x, y,�))

endfor

Stage 2: compute 2D steerable transforms
for t = 1 ton=2

foreach sub-bandi
S
i (�,�, t) :=
i(S�(�,�, t))

endfor
S�(�,�, t) := �(S�(�,�, t))

endfor

Stage 3: assign values to nodes
for t = 1 ton=2

foreach pixel (x, y)
Level[`]. Node[x, y, t]. value[0] := S	(x, y, t)
foreach sub-bandi

Level[`]. Node[x, y, t]. value[i] := S
i (x, y, t)
endfor

endfor
endfor

Figure 6 Constructing thè-th level of the MRA

After constructing thè-th level of the MRA we are left withn�n�n=2 nodes for this level

18

and a downsampled low pass version of the signalS�(�,�,�), which is then fed again to the
same procedure to compute level`� 1, and so forth. SinceS� is downsampled by a factor
of two in each of the three dimensions, each node in level`� 1 is considered a parent for
eight nodes in level̀. Eventually, we construct level` = 1, where we have four nodes and
a single value representing the low pass average of the entire sequence. This value is stored
at the root (level zero) of the tree. Thus, we obtain a tree whose root has four children, but
otherwise it has a branching factor of eight. Each internal node of the tree contains a vector
of 3(k+ 1) values:k subband responses and one detail coefficient for each of the three color
channels.

In order for us to be able to learn the new TVT based on the MRA representation of the
input TVT, it is imperative that the 3(k + 1) values stored in each tree node are respons-
es corresponding to the same location in the input signal. This is indeed the case in our
construction. We associateS	(x, y, t) andS
i(x, y, t) with the same node in the MRA. Note
that S	(x, y, t) represents the responses of the pixels in the original frames 2t � 1 and 2t
at locationx, y to the temporal filter (since we subsample by a factor of two).S
i(x, y, t)
represents the responses of the same pixels to the steerable filter, since it was applied to the
scaling coefficients corresponding to the same pixels.

Since both the 1D orthonormal wavelet transform and the steerable transform are invertible,
so is our 3D transform. More precisely, given a TVT of dimensionsn=2� n=2� n=2 that
was reconstructed at level`� 1 we reconstruct level̀ in the following way: First we apply
the inverse steerable transform on each of then=2 slices of sizen=2� n=2 using the values
of the steerable subband responses that are stored in the nodes of level`. This results inn=2
slices each of sizen� n. We now apply the inverse temporal filter using the values of the
highpass temporal filter that are stored in the nodes of this level. This results in ann�n�n
TVT. We repeat this process until we obtain a TVT of the same size as the input one.

Implementation Specifics

The 1D orthonormal wavelet we use for the analysis along the temporal dimension is a
Daubechies filter of length 10 [7]. For the spatial domain analysis we use the steerable
pyramid [25] with four subband filter orientations (0, 45, 90, and 135 degrees). Color is
handled by treating the red, green, and blue components separately. Thus, the values at
each node of the MRA hierarchy are vectors of length 15 in its high levels (where we
analyze the TVT as a cube) and of length 12 in its lower levels.

6.2 Handling non-cubic TVTs

The MRA construction algorithm described above assumes that the input signal has di-
mensionsn� n � n, wheren = 2m. In practice, the input TVT is typically of dimensions
n�n�r = 2m�2m�2q, whereq < m. For example, most of the sequences we experimented
with were 256� 256� 32.

There are many possible strategies to handle non-cubic TVTs. We have experimented with

19

the two strategies described below.

1. Apply the 3D transform from the previous sectionq times, untilS� becomes a 2D
signal of dimensions 2m�q�2m�q. The remainder of the pyramid is constructed using
only the 2D steerable transform.

2. Apply the 2D steerable filtersm� q times to each frame, generatingm� q levels of
the steerable pyramid for each image. We are now left with a 2q�2q�2q signal, and
apply our 3D transform to it. Thus, the resulting pyramid has branching degree 4 in
its m� q bottom levels, and branching degree 8 in the remaining levels.

Based on the results of our experiments, we chose the second strategy. We believe that this
strategy produces better results because in the resulting tree the nodes containing both tem-
poral and spatial response values are located closer to the root. Thus, all three dimensions
of the sequence are taken into account at the early stages of the learning process, i.e., when
the overall structure of the output TVT is being formed. The finer spatial details of each
frame are filled in later, without any further temporal constraints.

6.3 Synthesis Algorithm

Once the MRA of an input texture movie has been constructed, we use the statistical learn-
ing algorithm described in Section 4 (specialized to the case of a single input sample) to
generate a new random MRA tree from which a new movie is reconstructed. Below we
describe the automatic threshold selection algorithm we developed for TVT synthesis and
some important optimizations.

Threshold Selection

It was already explained in Section 4.2 that we cannot expect the user to select an appro-
priate threshold for the temporal dimension of 3D TVTs, because it is difficult to assess
the size of the temporal features in the sequence simply by observing it. Our technique for
choosing a threshold for the temporal dimension is inspired by wavelet compression meth-
ods for images [12]. The idea behind wavelet compression is to zero out coefficients with
L1 norm less than some small numbera. This decimation of the coefficients results in little
perceptual effect on subjective image quality. By the same token, we assume that switching
is permitted between coefficients whose values are no more than 2a apart. Thus, we let the
user specify a percentagep. We then compute the interval [�a, a] containingp percent of
the TVTs temporal coefficients. The temporal threshold value is then set to 2a.

Reducing the Number of Candidates

A naive implementation of the tree synthesis algorithm requires the examination ofall the
nodes at leveli in the original tree in order to find the maximal�-similar paths for every

20

nodevi on level i in the new tree. Given an 2m � 2m � 2q input TVT, in the bottom level
our algorithm has to check 2m�1 � 2m�1 � 2q nodes in the new tree, so applying the naive
algorithm results in a number of checks that is quadratic in this number. Since each node has
3k values, and for each such value we check a path of lengthm� 1, this exhaustive search
makes the synthesis of high-dimensional signals impractically slow. However, as briefly
mentioned in Section 4, much of the search can be avoided by inheriting the candidate
sets from parents to their children in the tree. Thus, while searching for maximal�-similar
paths of nodevi the algorithm must only examine the children of the nodes in the candidate
sets that were found forvi�1 while constructing the previous level. The result is a drastic
reduction in the number of candidates. The actual number of candidates depends of course
on the threshold, but in almost all cases we found that the number is very small (between 4
and 16). In the case of our 3D TVTs we found that this improvement reduced the synthesis
time from weeks to just a few minutes.

6.4 Results

We tested the TVT synthesis algorithm described in this paper on many different examples
of texture movies, including both natural and synthetic video sequences. The threshold for
the temporal responses was obtained as described in Section 6.3, withp usually between
70 and 80 percent. All input and output texture movies were of size 256� 256� 32, and
were generated on a Pentium II 450MHz with 1GB of RAM. Each movie clip took about
10 minutes to generate.

Figures 7 and 8 show four frames from each of six original and seven synthesized texture
movies:

Waterfall See rows 1 and 2 in Figure 7. The differences between the original and synthe-
sized clips are noticeable both in the static structure of the waterfall, and in the water
flow. These differences are particularly apparent in the left hand side and at the top
of each frame.

Crowd See rows 3 and 4 in Figure 7.

Volcano See rows 5, 6, and 7 in Figure 7. Here we show two different synthesized clips.

Clouds The original sequence in this case is also synthetic. See rows 1 and 2 in Figure 8.

Fire See rows 3 and 4 in Figure 8.

Jellyfish See rows 5 and 6 in Figure 8.

In all of these cases, our synthesis algorithm has succeeded in producing texture movies
which closely resemble the original sequences, yet exhibit various readily apparent differ-
ences.

21

We have also extensively experimented with the specialization of our algorithm to the task
of sound texture synthesis (1D signals). The resulting sound synthesis algorithm is de-
scribed in another paper [1].

Limitations

Our algorithm stores in main memory both the MRA constructed from the input signal and
the MRA that is being generated. The resulting memory requirements are quite substantial.
Specifically, on a workstation with 1GB of RAM our implementation currently generates
short movies (32 frames at 256� 256 resolution, and 128 frames at 128� 128). Although
longer frame sequences can be generated by creating several short ones and concatenating
them while blending their boundary frames, this approach often introduces excessive blur
in the blended frames and does not result in a desired “typical” TVT.

In several synthesized texture movies, occasional spatial and temporal discontinuities can
be seen. This results from the tree-based nature of the synthesis algorithm. Neighboring
spatio-temporal regions in the movie can sometimes be far apart in the MRA tree structure.
In those cases the constraints between such regions are weaker than they should be.

Our approach assumes that the frames are filled with texture in a relatively homogeneous
manner; the method does not respond well to large changes in the size of texture features
across the frames, which can occur for example due to perspective foreshortening. Large
static objects in the field of view also interfere with successful synthesis. The method works
best when the camera appears to be stationary.

7 Conclusions and Future Work

We have described a method, based on statistical learning and multi-resolution analysis,
for generating new instances of textures from input samples. While most of the previous
work in this area has focused on the synthesis of 2D textures [8, 18, 34], our technique also
enables the synthesis of mixed 2D textures that simultaneously capture the appearance of a
number of different input textures. The ability to produce such mixes will undoubtedly en-
hance the creative abilities of artists and graphics designers. We have also extended texture
synthesis from the domain of static textures to time-varying textures: 1D sound textures
and 3D texture movies. Our experiments demonstrate that our techniques are robust, and
work on a large variety of textures.

The work described in this paper is just the first step towards building a complete system
for automatic generation of special effects from examples. There are many ways to further
enhance and extend our approach.

Longer movies.At present, our algorithm produces movie clips of the same length as the
input clip. Longer clips can be generated by concatenating their MRA trees, but this often
results in a temporal discontinuity. Thus, a more drastic change in the algorithm is needed
in order to be able to generate arbitrarily long frame sequences. We would like to develop

22

original:

synthesized:

original:

synthesized:

original:

synth. A:

synth. B:

Figure 7 Texture movie synthesis examples. In each of the examples above, the first row
shows four frames from the original movie clip (frames 0, 7, 14, and 21), and the fol-
lowing row(s) shows the corresponding frames in the synthesized clip(s). The examples
are: waterfall (rows 1–2), crowd (rows 3–4), and volcano (rows 5–7, two different synthe-
sized clips). While the synthesized frames are very similar to the original in their overall
appearance, pairwise comparison reveals many differences.

23

original:

synthesized:

original:

synthesized:

original:

synthesized:

Figure 8 More texture movie synthesis examples: clouds (rows 1–2), fire (rows 3–4), and
jellyfish (rows 5–6).

24

an algorithm capable of adding more frames to a prefix frame sequence that has already
been computed, without having to construct the entire MRA tree of the longer sequence.

Full integration of sound and picture.Currently, the synthesis of the movie and its sound-
track are completely independent. We would like to extend our algorithms to take into ac-
count constraints between these two modalities, and to synthesize them in a synchronized
fashion.

Movie mixing. It should be possible to extend the technique for 2D texture mixing de-
scribed in Section 5.2 to generation of “movie mixtures”.

Classification.Methods for statistical learning of 2D texture images have been successful-
ly applied not only to texture generation, but also to texture recognition and image denois-
ing [10]. These applications are made possible by realizing that the statistical learning of
2D textures implicitly constructs a statistical model describing images of a particular class.
Similarly, our approach for TVT generation can be used as a statistical model suitable for
describing TVTs. Therefore, it should be possible to apply this statistical model for tasks
such as classification and recognition of such movie segments.

References

[1] Ziv Bar-Joseph, Shlomo Dubnov, Ran El-Yaniv, Dani Lischinski, and Michael Wer-
man. Statistical learning of granular synthesis parameters with applications for sound
texture synthesis. InInternational Computer Music Conference (ICMC99), 1999.

[2] M. Basseville, A. Benveniste, K.C. Chou, S.A. Golden, R. Nikoukhah, and A.S. Will-
sky. Modeling and estimation of multiresolution stochastic processes.IEEE Transac-
tions on Information Theory, 38(2):766–784, 1992.

[3] M. Basseville, A. Benveniste, and A.S. Willsky. Multiscale autoregressive processes,
part II: Lattice structures for whitening and modeling.IEEE Transactions on Signal
Processing, 40(8):1935–1954, 1992.

[4] G.E.P. Box, G.M. Jenkins, G.C. Reinsel, and G. Jenkins.Time Series Analysis : Fore-
casting and Control. Prentice Hall, 1994.

[5] P.J. Burt and E.H. Adelson. A multiresolution spline with application to image mo-
saics.ACM Transactions on Graphics, 2(4):217–236, October 1983.

[6] Thomas M. Cover and Joy A. Thomas.Elements of Information Theory. Wiley Series
in Telecommunications. John Wiley & Sons, New York, 1991.

[7] Ingrid Daubechies. Orhtonormal bases of compactly supported wavelets.Communi-
cations on Pure and Applied Mathematics, 41(7):909–996, October 1988.

[8] J. S. De Bonet. Multiresolution sampling procedure for analysis and synthesis of
texture images. InComputer Graphics, pages 361–368. ACM SIGGRAPH, 1997.

25

[9] J. S. De Bonet. Novel statistical multiresolution techniques for image synthesis, dis-
crimination, and recognition. Master’s thesis, Massachusetts Institute of Technology,
Cambridge, MA, May 1997.

[10] J. S. De Bonet and P. Viola. A non-parametric multi-scale statistical model for natural
images.Advances in Neural Information Processing, 10, 1997.

[11] J. S. De Bonet and P. Viola. Texture recognition using a non-parametric multi-scale
statistical model. InProceedings IEEE Conf. on Computer Vision and Pattern Recog-
nition, 1998.

[12] Ronald A. DeVore, Bj¨orn Jawerth, and Bradley J. Lucier. Image compression through
wavelet transform coding.IEEE Transactions on Information Theory, 38(2 (Part
II)):719–746, 1992.

[13] David Ebert, Wayne Carlson, and Richard Parent. Solid Spaces and Inverse Particle
Systems for Controlling the Animation of Gases and Fluids.The Visual Computer,
10(4):179–190, 1994.

[14] David Ebert, Kent Musgrave, Darwyn Peachey, Ken Perlin, and Worley.Texturing
and Modeling: A Procedural Approach. Academic Press, October 1994.

[15] David S. Ebert and Richard E. Parent. Rendering and animation of gaseous phenom-
ena by combining fast volume and scanline A-buffer techniques. In Forest Baskett,
editor, Computer Graphics (SIGGRAPH ’90 Proceedings), volume 24, pages 357–
366, August 1990.

[16] Ran El-Yaniv, Shai Fine, and Naftali Tishby. Agnostic classification of Markovian
sequences. In Michael I. Jordan, Michael J. Kearns, and Sara A. Solla, editors,Ad-
vances in Neural Information Processing Systems, volume 10. The MIT Press, 1998.

[17] Alain Fournier and William T. Reeves. A simple model of ocean waves. In David C.
Evans and Russell J. Athay, editors,Computer Graphics (SIGGRAPH ’86 Proceed-
ings), volume 20(4), pages 75–84, August 1986.

[18] David J. Heeger and James R. Bergen. Pyramid-based texture analysis/synthesis. In
Robert L. Cook, editor,SIGGRAPH 95 Conference Proceedings, Annual Conference
Series, pages 229–238. ACM SIGGRAPH, Addison Wesley, August 1995.

[19] Anestis Karasaridis and Eero Simoncelli. A filter design technique for steerable pyra-
mid image transforms. InProc. ICASSP-96, May 7–10, Atlanta, GA, 1996.

[20] N. Merhav and M. Feder. Universal prediction.IEEE Transactions on Information
Theory, 44(6):2124–2147, 1998.

26

[21] Darwyn R. Peachey. Modeling waves and surf. In David C. Evans and Russell J.
Athay, editors,Computer Graphics (SIGGRAPH ’86 Proceedings), volume 20(4),
pages 65–74, August 1986.

[22] Ken Perlin. An image synthesizer. In B. A. Barsky, editor,Computer Graphics (SIG-
GRAPH ’85 Proceedings), volume 19, pages 287–296, July 1985.

[23] W. T. Reeves. Particle systems – a technique for modeling a class of fuzzy objects.
ACM Trans. Graphics, 2:91–108, April 1983.

[24] William T. Reeves and Ricki Blau. Approximate and probabilistic algorithms for
shading and rendering structured particle systems. In B. A. Barsky, editor,Computer
Graphics (SIGGRAPH ’85 Proceedings), volume 19, pages 313–322, July 1985.

[25] Eero P. Simoncelli, William T. Freeman, Edward H. Adelson, and David J. Heeger.
Shiftable multi-scale transforms. IEEE Transactions on Information Theory,
38(2):587–607, March 1992. Special Issue on Wavelets.

[26] Karl Sims. Particle animation and rendering using data parallel computation. In Forest
Baskett, editor,Computer Graphics (SIGGRAPH ’90 Proceedings), volume 24, pages
405–413, August 1990.

[27] Jos Stam and Eugene Fiume. Turbulent wind fields for gaseous phenomena. In
James T. Kajiya, editor,Computer Graphics (SIGGRAPH ’93 Proceedings), vol-
ume 27, pages 369–376, August 1993.

[28] Jos Stam and Eugene Fiume. Depicting fire and other gaseous phenomena using d-
iffusion processes. In Robert Cook, editor,SIGGRAPH 95 Conference Proceedings,
Annual Conference Series, pages 129–136. ACM SIGGRAPH, Addison Wesley, Au-
gust 1995. held in Los Angeles, California, 06-11 August 1995.

[29] Eric J. Stollnitz, Tony D. DeRose, and David H. Salesin.Wavelets for Computer
Graphics: Theory and Applications. Morgan Kaufmann Publishers, Inc., San Fran-
cisco, CA, 1996.

[30] Greg Turk. Generating textures for arbitrary surfaces using reaction-diffusion. In
Thomas W. Sederberg, editor,Computer Graphics (SIGGRAPH ’91 Proceedings),
volume 25, pages 289–298, July 1991.

[31] Andrew Witkin and Michael Kass. Reaction-diffusion textures. In Thomas W. Seder-
berg, editor,Computer Graphics (SIGGRAPH ’91 Proceedings), volume 25, pages
299–308, July 1991.

[32] Steven P. Worley. A cellular texture basis function. In Holly Rushmeier, editor,
SIGGRAPH 96 Conference Proceedings, Annual Conference Series, pages 291–294.
ACM SIGGRAPH, Addison Wesley, August 1996.

27

[33] G.W. Wornell and A.V. Oppenheim. Wavelet-based representations for a class of
self-similar signals with application to fractal modulation.IEEE Transactions on
Information Theory, 38(2):785–800, 1992.

[34] S.C. Zhu, Y. Wu, and D. Mumford. Filters random fields and maximum en-
tropy(frame) - towards a unified theory for texture modeling.Int’l Journal of Com-
puter Vision, 27(2):107–126, 1998.

Appendix

The mutual source.Let P andQ be two distributions. Theirmutual source Zis defined
as the distribution that minimizes the Kullbak-Leibler (KL) divergence [6] to bothP and
Q. The KL-divergence from a distributionZ to a distributionP, where bothP andZ are
defined over a supportA, is defined to beDKL(PjjZ) =

P
a2A P(a) log P(a)

Z(a) . Specifically,

Z = arg min
Z0

�DKL(PjjZ0) + (1� �)DKL(QjjZ0).

The parameter� should reflect the prior importance ofP relative toQ. (When no such
prior exists one can take� = 1=2). The expression minZ0 �DKL(PjjZ0) + (1� �)DKL(QjjZ0)
is known as the Jensen-Shannon dissimilarity. Using convexity arguments it can be shown
(see e.g. [16]) that the mutual source is unique, and therefore, the Jensen-Shannon measure
is well defined. This Jensen-Shannon dissimilarity measure has appealing statistical prop-
erties and interpretation. For example, it provides an optimal solution to thetwo sample
problemwhere one tests the hypothesis that that two given samples emerged from the same
statistical source.

28

