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Abstract

Obtaining high quality, realistic motions of articulated
characters is both time-consuming and expensive, neces-
sitating the development of easy-to-use and effective tools
for motion editing and reuse. We propose a new simple
technique for generating constrained variations of differ-
ent lengths from an existing captured or otherwise animated
motion. Our technique is applicable to textural motions,
such as walking or dancing, where the motion sequence can
be decomposed into shorter motion segments without an ob-
vious temporal ordering among them. Inspired by previous
work on texture synthesis and video textures, our method es-
sentially produces a re-ordering of these shorter segments.
Discontinuities are eliminated by carefully choosing the
transition points and applying local adaptive smoothing in
their vicinity, if necessary. The user is able to control the
synthesis process by specifying a small number of simple
constraints.

1. Introduction

High quality motion control of articulated figures is one of
the most challenging tasks in computer animation. Such
motion may be specified manually by skilled animators with
the aid of sophisticated software tools, generated using sim-
ulation, or captured using optical or magnetic tracking. All
of these creation processes can be tedious, time-consuming,
and expensive. Therefore, there is a real need in a variety of
easy-to-use and effective tools for motion editing and adap-
tation in order to facilitate motion reuse.

In this work we describe a new tool for generating con-
strained variations of different lengths from an existing cap-
tured or otherwise animated textural motion. By this term
we refer to motion which can be regarded as a stationary
signal at some scale. Informally, textural motion is de-
composable into segments whose duration is typically small
with respect to that of the entire motion, such that by look-
ing at any given segment it is impossible to say which part
of the motion it came from1.

Our tool has many possible applications. Using an exist-
ing library or relatively short motion sequences, an anima-
tor can use our technique to generate a much larger variety

1Our definition of textural motion resembles that of a quasi-periodic
signal, but it is slightly more general, since we do not require the motion
elements to be similar to each other.

of motions, subject to animator-specified constraints. An
existing motion can be made longer, or transformed into a
loop by placing an identical constraint at the beginning and
at the end of the synthesized motion sequence. A group of
characters may be easily animated by assigning each char-
acter a variation of the same single captured motion. A mo-
tion may be fine-tuned to a new script or adapted to a new
soundtrack by appropriate placement of a small number of
constraints. In all of these tasks we do not attempt to modify
the motion’s style or alter any other high-level characteris-
tics; quite the contrary, we attempt to remain as close as
possible to the input motion sequence.

Our approach is inspired by previous work on texture syn-
thesis [3, 7, 17] and video textures [15]. Given a motion
sequence and a small set of simple constraints, we essen-
tially produce a re-ordering of short segments present in the
input sequence that satisfies the specified constraints. Such
a reordering inevitably introduces discontinuities into the
synthesized motion. To eliminate these discontinuities we
find transition points at which the magnitudes of the dis-
continuities are minimized and apply an adaptive smooth-
ing scheme in their vicinity.

2. Previous Work

In the past few years the problem of editing and reusing ex-
isting motion has attracted considerable attention. Several
researchers explored ways of modifying motion by means
of signal processing techniques [6, 16, 18]. This approach
may be used to generate entire families of realistic motions
from a single input sequence with a small amount of in-
put from the animator. Our approach is complementary to
these techniques: we also provide a tool for easily generat-
ing variations from a given motion, but we operate by essen-
tially “reshuffling” the input sequence, rather that applying
signal processing operations on it.

Brand and Hertzmann [5] introduced style machines,
probabilistic finite-state machines augmented by a multi-
dimensional style variable. Style machines are an excellent
high-level tool for motion editing and reuse. However, they
do not provide an animator with low-level, fine-scale con-
trol, such as the ability to specify hard constraints: “I want
the character to reach the highest point of its jump exactly
at time t”.

Our approach resembles the one described by Schödl
et al. [15] for generation of video textures. In particular,
they discuss video-based animation, where a user is pro-



vided with high-level controls for guiding video texture syn-
thesis. However, to our knowledge, their approach has not
been applied to 3D articulated figure motion synthesis, and
it does not directly support hard constraints, such as the
ones used in our approach. We also borrow many ideas from
recent work on texture synthesis [3, 7, 17].

Several other researchers applied texture synthesis tech-
niques to the problem of motion synthesis. Pullen and Bre-
gler [13, 14] used motion-captured data as a source for aug-
menting partially key-framed motions with high-pass band
information and/or additional degrees of freedom. With our
technique no extra key-framed data is necessary to create a
new full animation sequence.

Molina et al. [12] and Li et al. [11] both construct a two
level statistical model of the motion: a higher level that
controls the overall motion and a lower level that handles
the local dynamics. Our approach is different in that it does
not construct an explicit statistical model of the input data.
In order to satisfy the animator’s constraints, our approach
efficiently identifies good transitions directly in the origi-
nal motion capture data. Thus, our approach should reduce
both the number of transitions blends and the magnitudes of
the discontinuities that must be blended.

Some recent work, concurrent to ours, introduced the con-
cept of motion graphs. In general, a huge matrix of all tran-
sitions from one frame to another is created. A cost is as-
sociated with each transition. The transitions graph is then
created and pruned. Motions are synthesized by looking
for low-cost paths in the motion graph, sometimes subject
to constraints. Kovar et al. [8] used this framework to cre-
ate motions that follow a given 2D path. Lee et al. [10]
added a higher statistical level to control the synthesized
motion. Unlike our method, these two methods can’t handle
hard constrains. Arikan and Forsyth [2] can handle strong
constraints and weak constraints when synthesizing new
motions, but their approach requires a very large database
of captured motions. All of the three methods mentioned
above were designed to work with large motion databases,
and thus their pre-processing times are quite long (several
minutes to several hours). In contrast, our approach was de-
signed to work even with short captured motions, in which
it might be difficult to find many good transitions between
frames. The total computation time required by our method
is about the same as the length of the synthesized animation.

3. Textural Motion Synthesis

3.1. Overview

Our method takes as input a textural motion sequence, a set
of synthesis constraints, and the desired length of the syn-
thesized output sequence. The input motion sequence con-
sists of the character’s skeleton hierarchy description fol-
lowed by a sequence of frames. Each frame specifies the
absolute pose of the articulated figure by means of six de-
grees of freedom for the root of the hierarchy (three rota-
tion angles and a 3D translation) and three rotation angles
for each joint. All rotations are internally represented using
quaternions. We call this representation the joint angle rep-
resentation. This representation has the property that mod-
ifying various values, such as the translation of the root or
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Figure 1. Input and output trees. The horizontal lines repre-
sent levels in the trees. Arrows indicate constraints: in the
initialization stage each constrained frame and each of its
ancestors in the input tree (shown as black circles) is copied
to its designated location in the output tree, along with a
small neighborhood of siblings (shown in grey).

the rotation angles of a joint, does not deform the structure
of the skeleton. Therefore, this is the representation that we
use when filtering frames. However, this representation is
not appropriate for computing differences between frames:
the orientation of each joint affects all joints below it in the
skeleton hierarchy; as a result, a small change in the orien-
tation might have a profound impact on the character pose
when the joint is high in the hierarchy, while a change of
the same magnitude on another joint near the bottom of the
hierarchy might have a very small impact on the pose.

Therefore, we construct an additional representation for
each frame: the 3D pose representation, which is the set
of 3D positions of all joints and end-effectors. This is
a much more reasonable representation for comparing be-
tween frames, but, as expected, modifying values in this
representation deforms the character’s skeleton. Therefore,
in our system we use both of these representations: the
joint angle representation is used for filtering and modifying
frames, while the 3D pose representation is used for com-
paring between frames.

The constraints are simply a set of pairs; pair (i, j) means
that the i-th frame in the input sequence is constrained to
become the j-th frame in synthesized output sequence. Op-
tionally, a new path is also specified for the synthesized mo-
tion.

The output of our method is a new motion sequence of
the desired length. For the most part, it consists of sub-
sequences of frames from the original sequence reordered
in such a manner that all of the constraints are satisfied. An
exception are the frames in the neighborhood of the tran-
sitions between the sub-sequences; such frames might be
slightly modified by our local smoothing scheme for elimi-
nating discontinuities, as described in section 3.4.

The synthesis procedure employed by our method is similar
to the multiresolution constrained texture synthesis proce-
dure described by Wei and Levoy [17]. The main steps of
our method are:

1. Construct an input tree: a Gaussian multi-resolution
tree above the sequence of frames (in the joint an-
gle representation) by iteratively low-pass filtering and
subsampling. We typically use a tree with 3–5 levels.
The purpose of this tree is to accelerate the synthesis
algorithm, as will become apparent below.

2. Apply forward kinematics to compute the absolute
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Figure 2. The three-level neighborhood used in our imple-
mentation. The empty cell whose value is to be determined
is marked by an x. The neighborhood consists of x, its
ancestor and its children in the tree, and three more slots to
the left and to the right on each level. The numbers in the
cells are the relative weights used by our distance metric.

3D pose representation of the articulated character for
each frame on all tree levels.

3. Create an empty synthesis tree with the same number
of levels as the input tree. The finest resolution level of
this tree will eventually contain the output sequence.

4. Copy the constrained frames (and their ancestors) to
their target locations in the synthesis tree. Each con-
strained frame (ancestor) is copied along with a small
surrounding neighborhood (Figure 1).

5. Starting from the coarsest level, fill in all the gaps left
between the constraints by searching for best-matching
neighborhoods at the corresponding level of the input
tree, as described in sections 3.2 and 3.3.

6. Apply adaptive local smoothing in the vicinity of tran-
sitions between original motion sub-sequences to elim-
inate discontinuities, if necessary (section 3.4).

7. Repeat for the next level until the finest level has been
filled and smoothed.

8. Construct a new root rotation and translation trajec-
tory, as described in section 3.6.

In the remainder of this section we describe in more detail
the key steps of our method (steps 5, 6, and 8 above).

3.2. Neighborhoods and metrics

Gaps in the synthesis tree are regarded as sequences of
empty “frame slots”. In order to fill in an empty slot we
examine its neighborhood in the synthesis tree and look for
similar neighborhoods around slots at the same level of the
input tree. We use a three-level neighborhood which is sim-
ilar, in principle, to the neighborhoods used by Wei and
Levoy [17], but there are two important differences:
1. Slots from the next finer level are included — although
this level has not been processed yet, some of its slots may
have been filled by constrained frames during the initializa-
tion of the output tree. The synthesis algorithm must take
these frames into account when searching for the best frame
for the current slot.
2. We give different weights to different slots in the neigh-
borhood (decreasing with distance from the center slot).
The relative weights of the slots are shown in Figure 2.

The difference between two neighborhoods is defined sim-
ply as a weighted sum of the distances between correspond-
ing pairs of slots. Pairs in which the output neighborhood
slot is still empty are assigned a weight of zero, and all of
the remaining non-zero weights are renormalized to sum to
one. We calculate the distance between corresponding slots
as the distance between the joint and end-effector velocity
vectors, using the 3D pose representation.

After experimenting with various standard vector metrics
we concluded that a sum of ‖ ·‖∞ and ‖ ·‖0.5 yields the best
results. In other words, we take into account both the max-
imum difference among the velocity components and the
sum of the square roots of the differences of all components.
This metric was found to give slightly better results than the
more familiar ‖ · ‖2 norm.

3.3. Gap filling

We now describe in more detail how to fill in the gaps at a
particular level of the tree. Each gap is a sequence of empty
slots, bounded by the constrained frames, either from one
side or from both sides. We will focus on the latter case,
which is the more interesting (and complicated) among the
two.

Our strategy is first to find the best meeting point inside the
gap, and then work our way towards it from both ends. In
order to find such a meeting point for a gap at the coars-
est level of the tree we employ an exhaustive search. We
consider all the interior slots of a gap as potential meeting
points, perform the synthesis towards each such point from
both ends, and record the resulting sequence cost. The se-
quence cost is defined as the sum of distances between the
neighborhood of each synthesized slot and its best matching
neighborhood in the input tree. The meeting point with the
lowest sequence cost is then chosen.

The exhaustive search is expensive, since for a gap of k
slots we consider k different ways of filling it, each time
searching for the best matching neighborhood for each slot.
Therefore, the exhaustive search is only done at the coars-
est level. In the higher resolution levels we use the meeting
point from the previous level as an initial guess, and only
examine a small neighborhood of slots around this initial
guess.

We use an additional optimization to speed up the synthesis
at the finer levels of the tree. When filling an empty slot,
instead of searching for a match among all of the neighbor-
hoods at the corresponding level of the input tree we only
examine a constant number of neighborhoods: those around
the children of the slot that was chosen in the previous level
to fill in the parent of the current slot (see Figure 3). This
optimization accelerates synthesis by at least one order of
magnitude. The same idea was used to speed up texture
synthesis by Bar-Joseph et al. [3].

3.4. Local smoothing

Some input sequences do not contain a sufficient number of
repeating character poses. Thus, discontinuities may occur
at transition points between sub-sequences of the original
motion. The same problem was encountered in video tex-
tures by Schödl et al. [15].
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Figure 3. Acceleration of the synthesis process. The black
frame is the current slot to be synthesized. The dark-gray
frame is the black frame’s father. The white frames are the
best three candidates for the dark-gray frame, and the light-
gray frames are the white frames sons and their neighbors.
The light-gray frames are the only candidates for the black
frame.

Since we know precisely at which frames of the synthesized
sequence such transitions take place, we adaptively apply
local smoothing in a small neighborhood around such tran-
sitions. We start with a neighborhood of size two around
the transition, and apply a Gaussian filter of width 5 for
each frame in that neighborhood. If the neighborhood is
smooth enough, we stop. Otherwise we increase the size of
the neighborhood by two and apply the Gaussian filter again
until we get a smooth transition.

To decide if a neighborhood is smooth enough, we first
calculate the average acceleration of each joint and end-
effector 3D location over the frames around the transition.
Then after applying the Gaussian filter, we compare that
average to the accelerations just before and after the transi-
tion. The neighborhood is considered smooth enough if the
average is larger then the acceleration of both these frames.

There is no mathematical guarantee that the modified
frames produced by the smoothing operation necessarily
correspond to valid and natural character poses. However,
since the smoothing is performed on the joint angle rep-
resentation of the frames, the skeleton is never deformed
by this operation. In practice, we are typically smoothing
frames that came from the original motion (and thus corre-
spond to valid natural poses). The transitions are chosen by
our algorithm such that these frames are as similar to each
other as possible, thus minimizing the chance of getting an
unnatural pose after the smoothing. As can be seen in our
results, this adaptive local smoothing scheme successfully
eliminates visual discontinuities in the motion without in-
troducing conspicuous artifacts.

3.5. Choosing the constraints

The animator must specify a set of constraints as input for
our method. A poor or random choice of constraints will
usually result in a poor output.

First, at least one constraint is required, since our algorithm
must have at least one frame to start the synthesis from. This
frame could come from anywhere in the synthesis sequence
(but see the remarks below). Of course, in order to better
control the resulting motion, more than one constraint is

necessary.

In general, it is not a good idea to choose constraints from
the very beginning/end of the input sequence. This is
because when synthesizing frames before/after those con-
straints respectively, the algorithm will be forced to find a
meeting point at the frames between the first/last frame and
that constraint. Since there are very few frames to choose
from, the chosen meeting point might not be a good one.

When setting constraints, the animator should avoid plac-
ing them too close to each other in the synthesized se-
quence. If, for example, the Gaussian trees have four lev-
els, then setting two constraints with less then seven frames
between them, will cause a conflict between the two con-
straints at the coarsest level (where they correspond to the
same frame). In fact, it is desirable to leave much larger
gaps between constraints in the synthesized sequence, since
we copy a few of the neighboring frames along with each
constraint.

As mentioned above, setting random constraints might not
result in a good synthesized motion. Suppose the input mo-
tion is of a walking character, where each step cycle consists
of about forty frames. In other words, every forty frames the
feet are roughly at the same position. Now suppose that we
constrain frame number one of the input motion to appear
as frame number one of the synthesized sequence, and also
to appear at frame number sixty of the synthesis sequence.
The resulting motion will then be forced to have either a sin-
gle step cycle with sixty frames in it, or two short step cy-
cles. This might not look natural, and may generate a transi-
tion with a large discontinuity (requiring a lot of smoothing
to fix). Of course, if the input motion is more diverse, con-
taining step cycles of varying lengths, this problem will be
alleviated.

3.6. Root trajectory reconstruction

In our current implementation the user is able to specify a
new animation path (root trajectory) for the cases where the
input motion advances roughly along a straight line. For
each synthesized frame, we take the root trajectory deriva-
tive (velocity) from the original motion and use this velocity
to compute the new root translation in the synthesized se-
quence, taking into account changes in the local reference
frame along the new path. This ensures that the charac-
ter advances along the new path in a similar fashion to the
original motion.

If a new animation path has not been specified by the user
we reconstruct one by taking the root trajectory derivatives
from the original motion, as before, and simply integrating
them to obtain a new root trajectory.

4. Results

We implemented our algorithm in C++ as a plug-in for the
Maya animation system [1], and have been able to gener-
ate a variety of motions from different motion capture se-
quences. A frame from each of the resulting animations
is shown in Figure 4, and various statistics are reported in
Table 1. All of the corresponding movies can be found at
http://www.cs.huji.ac.il/labs/cglab/research/ltca.
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Name Num. joints Original length New length Num. constraints Synthesis time (sec.)
Drunk walk (A) 23 512 1024 7 37
Drunk walk (B) 23 512 1024 8 43
High-wire 23 512 1024 6 32
Ballet walk 23 512 2048 9 81
Cool walk 23 512 1024 8 30

Table 1. Statistics for the synthesis examples. Times were measured in seconds on a 866 MHz Pentium III PC.

Figure 4. Frames from each of the animations we have generated From left to right: Drunk Walk — The original sequence is
performed by the middle character; the other two were synthesized by our method (drunk.mpg and drunk-path.mpg). High-Wire —
The original motion is performed by the character in the back (highwire.mpg). Cool walk — The original motion is performed by the
left character (cool.mpg and cool-path.mpg). Ballet walk — original straight line walk (ballet-original.mpg). Synthesized motion
loop along an 8-shaped path (ballet-eight.mpg).

Figure 5 and the accompanying movie (drunk.mpg) demon-
strate an application of our method to modify and double
the length of a drunk person walking sequence. The plots
show the trajectories of two joint angles in the shorter orig-
inal sequence (top plot) and in the longer synthesized ones
(bottom plots). The constraints specified by the user for this
case are indicated by the letters ‘A’ through ‘H’. The letters
in each plot indicate the locations of the constrained frames
in the corresponding sequence.

This is a rather challenging test case, since the input se-
quence contains only 14 step cycles, almost none of which
is very similar to another because of the waving arms and
the stumbling nature of the walk, and the pose of the charac-
ter hardly ever repeats itself. Therefore, we believe it would
be difficult to construct a good high-level motion model
[4, 5, 12] from such a training set. Our method, however,
is still able to generate visually continuous and naturally
looking motions by locally smoothing over discontinuous
transitions.

Our next example uses a high-wire walking input sequence
(movie: highwire.mpg). Again, the basic cycle of this mo-
tion is quite complex and does not repeat itself too much,
but our method succeeds in generating a longer sequence
without noticeable discontinuities2.

Another example is a “cool walk” sequence (movie:
cool.mpg). In this case the synthesized sequence was con-
strained to begin identically to the original sequence, and
then to continuously diverge from it.

Finally, we apply our method to a “ballet walk” sequence.
In the original sequence the character is walking in a
roughly straight line (movie: ballet-original.mpg). We con-

2A jerk in the right leg of the synthesized character can be noticed
around seconds 8, 18, and 27. This flaw is present in the original motion,
as can be seen by observing the original motion around second 6.

strained the synthesized sequence to begin and end with the
same character pose and specified a new 8-shaped path in-
stead of the original straight one. The result is an animation
loop of a person walking along the new path (see movie:
ballet-eight.mpg).

Limitations

As expected, our method appears to work best for motions
containing many small segments similar to each other. For
more complex motions with fewer repetitions it is more dif-
ficult for our method to find natural looking transitions be-
tween pairs of constraints. Thus, the animator must some-
times choose the constraints carefully.

Another limitation of our method is that it can be difficult
to get interesting results from short input sequences.

Our method does not currently ensure various typically de-
sirable properties, such as that the feet of a character do not
penetrate the ground while walking. Thus, we believe that
in practice our method should be used in conjunction with
other techniques such as Kovar and Gleicher’s [9] work for
foot-skate cleanup.

5. Conclusions
We have described a new tool for generating constrained
variations from existing captured or otherwise animated
textural motion sequences. Our technique is not intended
as a replacement for previously developed tools for motion
editing; rather it is meant to complement them, adding a
new useful component into the animator’s toolbox.

In future work we plan to extend our method to mix together
elements from several different input motion sequences,
perhaps in a manner similar to the texture mixing algorithm
of Bar-Joseph et al. [3]. We also plan to consider other,
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Figure 5. Drunk walk. The three plots illustrate the results of the synthesis by means of the angular trajectories of two joint angles.
The top plot corresponds to the original sequence. The letters ‘A’ through ‘H’ indicate the positions of the constrained frames in the
original sequence and in each of the two synthesized ones.

more sophisticated, types of constraints, such as the soft
constrains described by Arikan and Forsyth [2].
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