
Automatic Lighting Design using a
Perceptual Quality Metric

A thesis submitted in fulfillment
of the requirements for the degree of

Master of Science

by

Ram Shacked

supervised by
Dr. Dani Lischinski

School of Computer Science and Engineering
The Hebrew University of Jerusalem

Jerusalem, Israel

February, 2001

1

Contents

1 Introduction 6

2 Related Work 7

3 Visual Perception 8

3.1 The human visual system . 8

3.2 Psychophysic and Vision research . 9

3.3 Edges . 11

3.4 Derivation of shape information . 13

3.4.1 Depth Cues . 13

3.4.2 Shape From Shading . 14

3.4.3 Shadows . 16

3.5 Other perceptual issues . 17

3.6 Conclusions . 19

4 Perceptual Image Quality Function: Principles 21

4.1 Target terms . 22

4.1.1 The shading gradients term fgrad . 22

4.1.2 The detected edges term fedge . 23

4.1.3 The variance term fvar . 23

4.1.4 The mean term fmean . 24

4.1.5 The histogram equalization term fhist . 24

4.1.6 Light direction term fdir . 25

4.2 Integration of the target terms . 25

4.3 Spatial frequency and color domains . 25

2

5 Perceptual Image Quality Function: Practice 27

5.1 Precise definition of the target terms . 28

5.1.1 The detected edges term fedge . 28

5.1.2 The shading gradient term fgrad . 30

5.1.3 The variance term fvar . 31

5.1.4 The mean term fmean . 31

5.1.5 The histogram equalization term fhist . 32

5.1.6 The light direction term fdir . 32

5.2 Quality function evaluation procedure . 33

6 Lighting Design 35

6.1 Methodology . 36

6.2 Process framework . 36

6.3 Implementation . 40

6.3.1 Scene and illumination model specifications 40

6.3.2 Reducing the number of free parameters . 41

6.3.3 Preliminary geometric computations . 42

6.3.4 Initializing free variables . 45

6.3.5 Constant initializations . 46

6.3.6 Quality function calibration . 47

6.3.7 Optimization . 48

6.3.8 Using the fdir component . 48

6.3.9 Full automation . 49

6.4 Multiresolution . 50

7 Results 50

8 Summary and Future work 64

3

List of Figures

3.1 Realistic appearance. 9

3.2 Edge types. 11

3.3 Shading as a depth cue. 14

4.1 Quality function: cumulative effect of target terms on the image. 22

4.2 Quality function: cumulative effect of target terms on the histogram. 23

4.3 Contribution of target terms. 26

5.1 precomputed image map. 29

5.2 Spherical coordinate system for light source location. 33

6.1 System framework. 38

7.1 Cube. 53

7.2 Fork. 54

7.3 Cow. 55

7.4 Baby. 56

7.5 Cherries. 57

7.6 Dagger. 58

7.7 Sword. 59

7.8 Foot. 60

7.9 Air-boat. 61

7.10 Galleon. 62

7.11 Paddle-boat. 63

4

Abstract

Lighting has a crucial impact on the appearance of 3D objects and on the ability of
an image to communicate information about a 3D scene to a human observer. This work
presents a new automatic lighting design approach for comprehensible rendering of 3D
objects. Given a geometric model of a 3D object or scene, the material properties of the
surfaces in the model, and the desired viewing parameters, our approach automatically
determines the values of various lighting parameters by optimizing a perception-based
image quality objective function. This objective function is designed to quantify the ex-
tent to which an image of a 3D scene succeeds in communicating scene information,
such as the 3D shapes of the objects, fine geometric details, and the spatial relationships
between the objects. Our results demonstrate that the proposed approach is an effective
lighting design tool, suitable for users without expertise or knowledge in visual perception
or in lighting design.

5

1 Introduction

Lighting design for image synthesis involves specifying values for lighting parameters, such as posi-
tion, color, and intensity, for each of the light sources in a 3D scene model. Once the scene geometry,
the material properties, and the viewing parameters have been specified, the appearance of the scene
in a rendered image depends exclusively on the lighting. Poorly designed lighting may result in in-
comprehensible images, containing under- and over-illuminated regions, exhibiting poor contrast, and
failing to effectively communicate the three-dimensional structure of the scene to a human observer.

In order to find an image with a desired appearance, one has to search through the space of possible
lighting specifications. The traditional approach towards lighting design for image synthesis typically
uses a direct design paradigm, where the user iteratively specifies all of the required lighting param-
eters, renders the scene, evaluates the results, makes modifications in the design, and so forth. This
is essentially a trial-and-error approach, with the obvious drawback that the user must actively partic-
ipate in each iteration. Thus, the design process is time-consuming and tedious. Furthermore, since
the user may need to manipulate several lighting parameters and predict how their values will affect
the the resulting image, the process requires expertise in lighting design as well as an understanding
of visual perception issues.

An alternative approach is based on an inverse design paradigm. The user is presented with some
interface that enables him to specify a set of objectives and/or constraints that the lighting design
should satisfy, and the parameters are then solved for in an automatic fashion [6, 14, 23, 30]. These
methods, reviewed in Section 2, are certainly less tedious, but still require users to know and to be able
to articulate a priori what is the appearance that they desire to achieve. Thus, this approach might still
be difficult to use for a non-expert user, whose goal is merely to render a comprehensible image of the
scene at hand. There seems to be a need in helping a user to define his lighting design goals. That is,
supply some directives for selecting the desired image out of the range of possible images that can be
rendered for the scene.

This work presents a novel fully automatic approach to lighting design, geared towards generation of
comprehensible, communicative images of 3D objects. More specifically, given a geometric model
of a 3D object or scene, the material properties of the surfaces in the model, and the desired viewing
parameters, our approach automatically determines the values of various lighting parameters. This
is done by optimizing a perception-based image quality objective function designed to quantify the
extent to which an image of a 3D scene succeeds in communicating scene information, such as the 3D
shape of each object, fine geometric details, and the spatial relationships between the objects in the
scene.

In Section 6 we utilize our image quality function as an objective function for lighting design: we
present a system that searches the space of lighting designs spanned by several free lighting parameters
for a locally optimal lighting design (corresponding to a local minimum in the objective function). In
conjunction with some heuristics for automatic setting of the initial lighting specifications, our system
provides a fully automatic tool for lighting design. Thus, our approach provides both the lighting

6

design goals and the methodology to achieve them.

Our method is most suitable for ordinary users, with no expertise in lighting design or visual percep-
tion, who simply wish to synthesize a comprehensible image of their scene model. It is also suitable
for incorporation into various modeling tools for CAD and animation. The experiments reported in
Section 7 demonstrate that our approach is able to quickly and automatically generate lighting designs
that are significantly superior to commonly used default lighting configurations.

The remainder of this paper is organized as follows: the next section contains an overview of releated
works; Section 3 contains relevant background on human visual perception; In sections 4 and 5 we
construct the quality function. In section 6 we describe and implement our lighting design system.
Results of lighting solutions generated by our system are given in section 7. Finally, section 8 contains
conclusions and future work issues.

2 Related Work

Most previous automatic lighting design systems use the inverse design paradigm. From the user’s
point of view such systems are primarily characterized by the set of design goals the user is free to
specify, and the design space that they search. Most systems search a very limited portion of the
lighting parameters space, and still require considerable knowledge and expertise from the user.

Schoeneman et al. [30] control colors and intensities of light sources by “painting” desired colors
onto the scene’s surfaces. Kawai et al. [14] control light emissions and directions, as well as surface
reflectances by requesting the user to specify various constraints and objectives for the illumination.
Both of these techniques work for mostly diffuse scenes, and do not change the positions of lights.
The design goals are achieved using optimization. Poulin and Fournier [22] and Poulin et al. [23]
let the user specify shadows and highlights as design goals, from which they infer the light source
position and surface roughness.

Costa et al. [6] present a methodology in which fictitious luminaires can be defined and placed in the
scene to describe desired radiance distribution. Free design variables are then chosen (e.g. light loca-
tion and direction), and optimization is used to determine their values. This is a powerful approach,
capable of handling a wide range of design variables and constraints; however, specifying the design
goals and the constraints in this system appears to be a difficult task even for expert lighting designers.
Furthermore, the objective function for the optimization process must be also specified by the user by
programming it using a supplied scripting language.

An entirely different approach (non inverse design) for exploring the space of lighting designs is
presented in the Design Galleries framework of Marks et al [18]. Given a set of lighting parameters,
they try to optimally disperse the space of solution images in terms of perceptual quality, and allow
the user to browse these possible results and linearly combine them to try and compose a desired
solution. However, the metric that they use to measure the perceptual quality distance between two
given images is a simple pixel intensity distance.

7

Several other relevant works belong to the area of non-photorealistic rendering. These works are
concerned with generating visually comprehensible renderings of 3D objects. Having the privilege of
using non-photorealistic enhancement techniques, these methods usually draw the edges of the objects
in black, and enhance the appearance of surfaces by techniques such as adding cool-to-warm tone
gradations[12] or drawing contour lines and curved hatching[29]. Our work has similar goals, but we
limit ourselves to photorealistic computer graphics techniques, and enhance visual comprehensibility
by manipulating only the lighting parameters.

3 Visual Perception

In order to design a perceptual quality metric for automatic lighting design, we must first define what
visual information we would like our images to communicate, and then find practical computational
ways to quantify the effectiveness with which this information is communicated in specific images.

Our approach is based on a fundamental assumption that the perceptual quality of computer-generated
images is determined by several distinguishable aspects of visual information:

Shape Since computer-generated photorealistic images are normally concerned with displaying 3D
scenes, the most fundamental requirement from such an image is that it should clearly con-
vey the 3D shape of the visible surfaces and objects, as well as their spatial organization and
relationships.

Details A photorealistic image of a 3D scene should capture, as much as possible, the fine geometric
details present in the model, and display them conspicuously.

Surface properties An image should communicate surface properties, such as color, reflectance (and
in particular reflectance borders), and roughness.

Realism Beyond communicating shape information a photorealistic image should convey a realistic
impression. For our purposes, we are concerned with the presence of visual information that
gives a sense of realism and not with the degree of accuracy of the image in terms of similarity
to a real world scene [28]. Figure 3.1 demonstrates this issue.

The next step is to address the question of how these types of information are represented in the image
(and in particular how they might be affected by changes in lighting), and consequently the problem
of finding a way to detect and measure them.

3.1 The human visual system

The main task of the human visual system (HVS) is to derive a representation of shape [2, 19]. The
HVS can do much more than this, but informing the perceiver about brightness, color, texture an so

8

(a) (b)

Figure 3.1: Realistic appearance.
In both images the object is easily recognized as a cube. However, as a result of the different shading
patterns and contrasts, (b) appears more realistic than (a).

on, is secondary to deriving a representation of shape. The input for the process of recovering the
3D structure of a scene is the spatial and spatiotemporal patterns of light arriving from the world
(or from an image of a scene, in our case) and falling on the retinas . The HVS analyzes these
patterns of light to retrieve information about surfaces and objects in the enviroment being viewed.
The questions of interest for us are what features in the retinal image convey the information leading
to three dimensional perception, how can they be detected, and how-much each feature contributes to
visual perception.

The work and research done in the fields of visual perception and vision can provide us with only
limited answers to the “what” question, even fewer answers to the “how” question, and hardly any
useful answers to the “how-much” questions. In other words, the current results in these fields are
insufficient for our purpose of quantifying the perceptual quality of a given image. Nevertheless, some
of the visual perception theories and psychophysical research did provide us with useful information
about features that affect image perception.

The following subsections contain a brief examination of psychophysical experiments and research,
visual perception theories and computer vision, discussing their limitations regarding to our purposes,
and focusing on the aspects useful to our work.

3.2 Psychophysic and Vision research

Psychophysical experiments try to isolate different components from the input of the visual system,
and draw connections between these components and the performance of subjects with given percep-
tual tasks [3, 7, 15, 16, 21, 25, 31]. Such experiments are the basis to the development of broader vision

9

theories, which attempt to provide inclusive explanations of how, in psychological and computational
terms, the information is actually extracted from the input, and how the process is physiologically
carried out by the neurons. Unfortunately, due to the high complexity of the visual process, the lack
of profound physiological understanding, and the nature of techniques used for these experiments, the
research and theories in the field of visual perception are often inadequate when trying to general-
ize them for use in computer graphics, and especially for our purposes of formulating mathematical
connections between a given image and a quantitative perceptual quality. The reasons are:

1. experiments are conducted under limited laboratory conditions and are made on very simple
objects, taking into consideration only a single type of stimulus at a time. The input for the visual
system, however, is usually more complex, containing features which have mutual affection on
the way we interpret them.

2. Results of different researches sometimes lead to contradictory conclusions, and to date there
are quite few approaches trying to account for different aspects in the visual process.

3. The connections between causes (stimuli) and effects (perceptual performance) are often for-
mulated in a more qualitative than quantitative manner. Furthermore, most qualitative results
are formulated in threshold rather than supra-threshold manner, which make them less useful
for us.

It is somewhat ironical that it was the development of computer vision and artificial intelligence re-
search that formed the basis for the establishment of more coherent visual perception theories, with a
more computational and algorithmic approach. In computer vision research, some mathematical mod-
els were developed trying to solve the problem of recovering the geometry of surfaces from images
(e.g. [31, 16]). On the face of it such models could be a source of quantitative connections between
image information and perceptual ability. However, they are typically developed under very restric-
tive assumptions, and more important, since these methods derive from solving problems for computer
performance it is questionable how similar can they be to the processes carried out by human.

Coming from the field of artificial intelligence, Marr [19] used a computational approach to devise
a comprehensive theory of vision, which meant to be applicable to human perception, and hence he
relied at least in part on human psychophysical evidence to support his statements. Furthermore, an
important part of his work was to provide possible explanations about how the information-processing
algorithms suggested by the theory are implemented by the neurons. Although some aspects of Marr’s
theory have been shown to be faulty, and there are still doubts whether it is in principle possible
for machines to simulate human processes such as perceiving, such approach is considerably more
reliable, when working in the context of human perception, than pure computer driven approaches.

Although suffering from problems mentioned above, some aspects in visual perception theories and
psychophysical researches can supply some basic explanations regarding image features that lead to
three-dimensional perception, and in particular to the recovery of the depth and local surface orienta-
tion at each point in the viewing field, which provide the description of surfaces properties in the final
stages of early visual processing.

10

Figure 3.2: Edge types.
The edge-lines of the teapot on the left are drawn on the right: object-background occluding edge (1),
self occlusion (2), boundary edge (3) and reflectance edge (4).

3.3 Edges

According to Marr [19] and others, the HVS is organized as a multistage information processing
system. The function of the early visual processing is to achieve a description of surfaces in the scene.
The process starts with a luminance analysis of the retinal image, looking for intensity changes that
may potentially represent what seem to be the most fundamental features of surfaces in the image:
edges. The edge information achieved in the early stage of visual perception is a fundamental input
for further stages to come, and in particular for the recovery of three-dimensionality.

Two significant types of edges are used to characterize object shape [3, 15, 20, 25, 29]:

occluding (profile) edges including edges caused by self occlusion of object’s surfaces, and those
caused by occlusions between different objects or between object and background.

boundary (internal) edges edges where surfaces belonging to the same objects meet, forming a dis-
continuity in surface orientation. These edges can be characterized by a first order discontinuity
of surface [29].

We refer to these two types of edges collectively by the term feature edges. Another type of edges
inherent in the scene are surface-reflectance edges [1] (which are often represented by textures in
synthetic image rendering). Figure 3.2 demonstrates the different type of edges mentioned.

Edge detection Clearly, there is a relationship between the places in an image where light intensity
changes, and the places in the scene where feature edges exist, but this relation is complex. In most
natural images, the changes in light intensity associated with the edges of objects are embedded in
a mass of changes caused by other scene attributes such as reflectance edges, shadows, and other

11

strong shading variations due to highlights or surface curvature. One result of the early stage of visual
processing is a complex representation of all these intensity changes that have the potential of being
feature edges. Marr termed it “the raw primal sketch”. Using this noisy representation, the system
has to properly derive surface edges in further visual stages. Several computational models were
presented for achieving the intensity changes representation described above[2]. Most of them start
with filtering the image I with multi scale Gaussian low-pass filters (G), followed by a Laplacian
operator (r2). A phase of edge detection is then applied to the multiscale r2 �G � I representations,
by methods such as combining zero-crossing information from the different representations [20], or
by measurements made on the recombination of the representations [32]. Yet, as mentioned above, the
edge map derived by this process is by no means guaranteed to contain only surfaces edges, and further
visual and cognitive processing is to be performed for properly attributing these luminance edges to
scene features. This processing involves aggregation of similar patches together to form larger units.
A higher level knowledge or assumptions on the viewed world may constrain the interpretations of
the edge map (the extent to which such knowledge is involved at early visual stages is controversial).
A key point here is that if an edge of a surface in the scene is for some reason not represented by a
correspondent luminance change that can be detected as an edge in the image, then the image might
be misinterpreted. And this is exactly where computer generated images have an advantage from our
point of view: given the scene model and viewing parameters, it is possible to predict where surface
edges should occur in the rendered imaged, and practically derive a target edge map which the image
must conform to, in the sense that an edge in the target map is expected to be seen as an edge in
the rendered image. In particular, this enables us (a) to use a simple (and hence computationally
cheap) edges operator, that only needs to determine whether a predicted location in the image have
the feature on an edge, (b) measure a quality component of the image in terms of the prominence of
surfaces edges, and (c) aim to illumination conditions such that this quality is satisfied.

Edges and shape perception In essence the importance of edges in shape perception is quite in-
tuitive: in order to identify an object, the visual system must locate the borders between the various
surfaces that make up the object and those that distinguish it from the surrounding objects. Also, the
outer contours of an object provide information on both object shape and surface relief (outer contours
follow convexities on the object surface that are normal to the observer’s line of gaze). Koenderink [15]
and Marr [19] show how the occluding contour of surfaces can lead under certain conditions to shape
recovery without any further visual information. Ramachandran [26] demonstrates a direct interaction
between edges and the derivation of shape from shading (this will be further discussed in section 3.4).
Non-photorealistic algorithms that integrate image enhancement techniques into the rendering process
[12, 29] perform an explicit drawing of surface edges to make them more pronounced. This technique
is also commonly used by technical illustrators [12]. It is interesting to note that Ramachandran[26]
found out that sometimes an illusory contour created by occlusions leads to a better 3-D perception
than a black painted contour.

12

3.4 Derivation of shape information

There is evidence that the information in the visual scene is broken down into several separate path-
ways of representation and processing, including luminance, color, textures, motion and binocular
disparity [3] (when the information arrives from a 2D image, only the first three exist). These repre-
sentations interact with each-other during various stages of the visual process. Thus, edge information
obtained in early visual stage is integrated with other luminance information, as well as information
from the rest of the perceptual pathways, and form the input for the visual task of perceiving three-
dimensionality. The representation of three-dimensionality is achieved then by deriving several maps
of information: local surface orientation and rough depth maps [19], as well as that luminance map is
split in this stage into two complementary maps — reflectance and shading — by decomposing lumi-
nance at each location into its components assigned either to the reflectance properties of the surface
or to the light falling on the surface [1]. Clearly, these maps must conform to each other so they can
provide a consistent 3-D interpretation. Apparently the maps are derived simultaneously and mutually
contribute to each other.

The information for the construction of the different maps of representation, and in particular the
depth map, is mainly provided by what is known as the depth cues which are discussed in following
subsections.

3.4.1 Depth Cues

Depth cues are those stimulus characteristics that are used by the visual process to perceive depth.
These cues can be divided into two groups: physiological and pictorial cues [2, 5]. Physiological cues
include degree of convergence of the eye, accommodation of the lens, and stereopsis. These cues are
irrelevant when processing information arriving from a single 2-D image of the world. Pictorial depth
cues (also called monocular cues) include motion cues, which are also irrelevant when dealing with a
static image, and the following list of cues that may exist in rendered images:

Geometrical Linear perspective and relative size and height of the objects on the retinal image.
When viewed in textures, these cues are referred to as “texture gradients”.

Feature edges Profile edges due to silhouette and self occlusion, and internal edges due to surface
boundaries.

Shading Luminance gradients created by the reflection of light on surfaces.

Shadows Self and cast shadows.

Occlusion Objects being occluded by closer ones.

Atmospheric perspective Attenuated appearance of distant objects due to light scattering and ab-
sorption by the atmosphere (in photorealistic rendering this is simulated mainly by “fog” ef-
fects).

13

(a) (b)

Figure 3.3: Shading as a depth cue.
Left object (a) looks like a flat disk due to lack of any shading variations. Adding appropriate shading
(b) gives a vivid impression of depth and object looks like a 3D sphere.

The depth and orientation maps are most directly inferred from shading gradients and from surface
and textural contours. The division of luminance map into separate reflectance and shading maps is
also affected by existence of reflectance edges, which can be either achromatic or chromatic.

In terms of image quality, the very existence of such cues in the image can be used as indication
for quality. Among these cues, the ones that are most directly affected by illumination configuration,
apart from edges that were already discussed, are shading and shadows. Some psychophysical research
examined the effect of these two cues on derivation of shape.

3.4.2 Shape From Shading

Types of shading Restricting the discussion to shading caused by the reflection of direct illumination
on surfaces, two aspects of shading should be distinguished: (a) shading caused by light falling on
surface boundary locations, which in general will give rise to the visibility of edges; and (b) shading
on other areas of a surface, which may give rise to patterns of “smooth” shading gradients in relation to
the shape of the surface. The significance of the former in recovering shape information is embedded
in the edges it pronounce, whereas the latter provides further cues for surface depth and orientation,
which will be discussed here.

Shading patterns as depth cues Shading variations alone can convey an impression of depth, as
demonstrated by Figure 3.3. However, shading by itself is relatively a weak cue for perception of local
depth and surface orientation. Several studies (e.g. [16, 31]) revealed that subjects showed substantial
inaccuracy in tasks of estimating local surface curvature or orientation based on shading information.
Shading is much more effective when integrated with other cues, if available. Ramachandran[26]

14

demonstrates that the visual system recovers information about the shape of objects by combining
outline contours and shading cues. These outlines are naturally represented by the feature edges of
surfaces. This combination of feature edges and shading gradients to convey shape information is a
fundamental basis for establishing the quality metric in section 4. Todd[31] found that adding textures
to the surface improves the performance of the observers. Another factor that is found to improve
performance is existence of a specular highlight on the surface [7, 31]. Specular highlights are also
mentioned as important for shape communication in the work of Gooch[12] which was inspired by
principles of technical illustration.

How exactly the patterns of shading are analyzed by the HVS, and how can the contribution of ex-
isting shading information in the image be estimated for a purpose such as image quality metric, are
questions with no clear answers. Although mathematical models, that have been developed in the field
of computer vision can, under certain conditions, recover geometry of surfaces from shading analy-
sis, there is substantial evidence that they don’t simulate actual human observers: First, as mentioned
earlier, these models are generally applicable under restrictive assumptions such as Lambertian sur-
faces only, or advance knowledge of surfaces reflectance, etc. Second, results from psychophysical
experiments do not conform to the computational models. For example, human observers showed
poor performance in estimating local surface orientation or illumination direction [16, 21], and yet
they may have excellent understanding of an object’s shape. And indeed, a third argument is that the
mathematical models try to recover shape by local analysis of the shading, whereas there are evidence
that shape derivation, in general, and shape from shading in particular, is a global process, involving
either the entire visual field or a large portion of it, with integration of high level knowledge and other
types of visual information [15, 21, 26].

Cavanagh et al. [3] suggest that the contribution of shading to surface understanding may not be
mediated by the computation of surface normals at all, but perhaps proceed on the basis of surface
contours by interpreting the shading on a surface as tangent field, with each local tangent oriented
at the same direction as the luminance gradient function, and thus act as a set of surface contours
sufficient for the reconstruction of the surface relief.

Thus, without a real computational understanding of how the visual system is deriving depth and
shape information from shading gradients, our best bet is to take advantage of the knowledge that the
visual system is actually making use of shading gradients, in a manner that is perhaps more global
then local, and to measure the very existence of those gradients in the image. When rendering a scene,
illumination conditions can be chosen so as to encourage this existence of shading gradients in the
image.

Illuminant direction Apart from the explicit recovery of shape, a few experiments were concerned
also with certain effects of illuminant direction on the interpretation of the scene, which is a related
interesting subject from our point of view. A series of experiments examined the influence of illu-
minant direction on the performance in local surface curvature tasks [7, 21, 31]. These experiments
studied only a very limited set of simple objects and settings, and there is no thorough investigation

15

of the issue. Furthermore, results from various experiments are not consistent. It seems that the most
systematic study was conducted by [7], although inadequate (e.g. the only objects they used were
spheres). Their conclusion was that most accurate performance of subjects in estimating local surface
curvature was achieved with illuminant direction at about 45 degrees above simulated eye position.

A more general observation, though compelling, made by several researches is that the visual system
preferably assumes that the light illuminating the scene is coming from above. Ramachandran [26]
demonstrates three aspects of this principle: (a) ambiguities in surface relief (i.e. is it concave or
convex) are often resolved such that shading conforms to light coming from above, (b) impression of
depth is more powerful when the illumination is from above than from the side, and (c) lighting from
above greatly enhances one’s ability to group and segregate objects (operations performed in final
stages of visual perception). Notice that this observation is usually made in conjunction to assuming
that the scene is lit by a single light source, what seems to be another preferable assumption of the
visual system [1, 26]. This is firstly attributed to an inherent assumptions of the HVS on the world,
but also to the fact that when trying to adapt a global interpretation to the scene, understanding of
light sources presence is helpful (although not necessary): several light sources are more difficult to
recover, and if not properly recovered can yield illumination effects that may perceived by the visual
system as contradictory.

Shading and realism One more aspect of shading is relevant to our work: even when shading cue is
not indispensable for purposes of shape derivation, it is still a fundamental image feature for conveying
an impression of realism. For a cube to be recognized, prominence of edges is enough. However, a
cube with a close-to-uniform shading on each of its faces will convey less impression of realism than
a cube with more noticeable shading gradients (see Figure 3.1).

3.4.3 Shadows

Shadows in the scene introduce a certain conflict: on the one hand shadows can provide important
clues to help understanding the geometry of the scene and the interrelationship between objects. On
the other hand a shadow might hide shape and material information in its dark regions. Consequently,
the contribution of shadows to a displayed scene should be considered carefully. Cavanagh et al. [3]
found in their study of shape perception from shadows that the only requirement that is necessary
for the perception of depth due to shadows was that shadow regions be darker (in terms of lumi-
nance) than the surrounding nonshadow regions and that there be consistent contrast polarity along
the shadow border. Therefore, a shadowed surface area doesn’t have to be completely in the dark in
order to provide cues associated with shadows. That is, in cases where important information lies in a
shadowed area, if a dim light reaches that area, it may reveal some of the hidden information without
offsetting the useful effects of the shadow.

Two types of shadows are distinguished [3]:

16

Attached shadow Surface areas which the angle between their normal and direction of light falling
on the object is equal or greater than 90 degrees are not directly illuminated by the light and
consequently are in shadow with respect to that light. Such shadow is said to be attached to the
feature casting the shadow.

Cast shadow A shadow created where object is blocking light from reaching some parts of the scene.
This includes both the case where shadow from one object falls on another, and the case where
the shadow of one part of the object falls on another part (self shadowing).

An attached shadow provides information about the surface orientation. In particular, the border of
such shadow follow convexities on the surface that are everywhere normal to the direction of the
illuminant. Such a constraint is probably well known by the human visual system. Therefore, it is
generally desirable to illuminate a scene such that object are partially shadowed, possibly with some
dim illumination on shadowed areas. This approach is adopted both by photographers, who prefer
side illumination upon strong front illumination, with some secondary illuminant for the shadowed
areas, and by technical illustrators who use single light source from above the scene, with techniques
like cool-to-warm hue shift to account for surface curvature in shadowed areas [12].

Cast shadows can provide information about the position and shape of the object casting them, on
the one hand, and a subset of object contours on the object on which the shadow falls, on the other
hand. A useful constraint related to cast shadows is that enclosed shadows regions signal concavities
[3]. Automatically evaluating the contribution of cast shadows to scene interpretation, and directing
illumination for optimizing shadow cues while considering the tradeoff with the need to minimize lost
of information in darkened areas, are difficult tasks, and were not handled in the frame of the current
work.

3.5 Other perceptual issues

Spatial frequency domain

Although the visual process as described above is concerned primarily with the spatial luminance
distribution, some aspects of the human visual system behavior are directly related to the spatial fre-
quency content of the retinal image, and as such are attributed to a spatial processing of the frequency
patterns by multiple bandpass mechanism, believed to be performed by specialized brain cells in the
visual cortex [9, 27, 4]. Some approaches suggest that image is internally represented in the brain by
channels of spatial frequency and orientation. These models can explain visual characteristics such
as [4] contrast sensitivity - the contrast sensitivity of the visual system is a function of the spatial
frequency and orientation of the stimulus pattern. Sensitivity to high frequency content is generally
poor; spatial masking - detectibility of a particular pattern is reduced by the presence of a second
pattern of similar frequency content; contrast adaptation - sensitivity to selected spatial frequency is

17

temporarily lost after observing high contrast patterns of the same frequencies; as well as other char-
acteristics. Spatial frequency representation is also suitable for analyzing geometrical depth cues, and
especially texture gradients [9]. In terms of image quality, spatial frequencies can supply estimation
of fine details visible in the image, indicated by high frequencies.

In our metric, however, we currently don’t use spatial frequencies analysis from several reasons spec-
ified in Section 4 below.

Non linearity of luminance perception

The subjective brightness (i.e. brightness as perceived by the human visual system) is a non-linear
function of luminance [10, 11, 13, 4]. The particular non-linear relationship is not well established,
but the function is usually found to behave logarithmically. Consequently, when working with a linear
luminance scale, the eye responses to logarithmic contrast. That is, the perceived contrast of two
luminance intensities I1 and I2 is proportional to log(I2) � log(I1). Hence the eye is sensitive to the
ratio of intensities, I2=I1. Therefore, if accurate measurements of perceived contrast (or luminance
gradients) is to be performed with a linear luminance scale, this non-linearity should be taken into
account. This can be done by either mapping luminance to contrast scale by techniques such as taking
the log10 or the cube root of the luminance intensities [13], or by using suitable contrast formula such
as Michelson contrast: C = (Imax�Imin)=(Imax + Imin) , used for computing contrast in luminance
gratings [10].
For computer images another relevant factor that should be considered is the non-linearity of the
CRT: displayed luminance is exponential function of the input voltage (which is in the general case
proportional to pixel value). The exponent is usually denoted by and its value is typically 2:8� 0:3
[10]. In gamma-corrected monitors the input signal is adjusted before sent to the monitor, so the
resulting pixels intensity values linear are linearly scale. Interestingly, the monitor’s gamma correction
domain is close to the visual system’s cube root domain, and therefore if a monitor is not gamma
corrected, the response of the eye to pixels intensities will be close to linear, without any mapping.
In this work measurements of luminance gradients and contrasts are applied to image pixels without
regarding any of the non-linearities mentioned above. It is stated here that these measurements have
higher perceptual accuracy when perceived brightness is linear with the pixels intensities scale.

Brightness adaptation

The human visual system can adapt to light intensities in a wide dynamic range, in which intensities
change by factor of more than 106 for photopic vision alone. However, it cannot operate over such a
range simultaneously. Rather, this large variation is accomplished by changes in the overall sensitivity,
a phenomenon called brightness adaptation [2, 10, 11, 4]. At any situation the visual system is adapted
to a certain light intensity, which is called the brightness-adaptation level, and is most sensitive to
intensities around that level, and totally insensitive to intensities at some distance below it, which are

18

all perceived as black. Sensing much higher intensities will result in shifting the adaptation level to a
higher point.
One implication of this phenomenon in image perception is that images with large portions displayed
in intensities much above or much below the average (which implies the adaptation level) are generally
not desirable.

Contrast sensitivity

The sensitivity to luminance contrast is a function of the brightness adaptation level (as well as of
spatial frequencies, as mentioned in 3.5 above) [10, 11, 27, 4]. One variable that was measured in
psychophysic experiments is the just-noticeable-difference (JND) contrast. That is, what is the min-
imal luminance change required for an observer to perceive a difference. For a uniform background
level at luminance B with a small spot in the middle at luminance B +�B, the JND is constant with
respect to the ratio �B=B, with value of about 0.02 for a wide range of intensities (this is known as
Weber’s law). A more realistic setting is when background is at some level B0, and the contrast is
introduced by two adjacent spots of intensities B, B + �B. The results show that the farther B is
from the background, the higher is the threshold for perceiving the luminance difference. Once again
this demonstrates that the visual system is most sensitive to luminance changes around the adaptation
level.

Lightness constancy

Human observers can properly perceive the albedo of an object under a wide range of illumination
intensities (a piece of white paper appears to have approximately the same albedo whether it is viewed
in dim light or bright light) [5, 4].

Color domain

Thus far the discussion about image perception was focused on luminance information and ignoring
chromaticity, and for good justification. Although in some situations the spectral distribution of light
in the image can be used by the visual system for spatial tasks, it is usually by far less effective than
luminance image. In particular it has been shown that color image is not good for depth percep-
tion [3, 26, 8]. On the other hand a chromatic map can directly provide information about material
composition and textures.

3.6 Conclusions

In this section we have discussed relevant issues in perception theories and psychophysical research
and the difficulties in applying them to our work. Here we bring a summary of information and

19

features in the image, as well as some principles of the HVS, which we have nevertheless found useful
to our needs:

� Edges: Occluding edges, boundary edges and reflectance edges should be displayed promi-
nently by the image.

� Shading gradients: The presence of shading gradients on surfaces provides important shape
information, as well as impression of realism.

� Shadows: Attached shadows and cast shadows helps to recover 3D shape. In this work we take
into account only attached shadows.

� Highlights: Specular highlights can also help in perceiving the shape of the object, as well as
providing information about the nature of the material.

� Luminance and Color: Luminance information is much more important for shape perception
than color information.

� Brightness adaptation and contrast sensitivity: At any situation the HVS is adapted to a
certain light intensity level. When viewing an image that intensity is determined by the average
image intensity. The HVS to luminance variations is highest around the adaptation level, and
decreases as the intensity levels get farther.

� Lightness constancy: There is no unique illumination intensity for the albedo (reflectance) of
an object to be perceived correctly by the HVS.

� Light source:

– Light direction: The HVS tends to assume that the light illuminating the scene is coming
from above.

– Spectral distribution: There isn’t any benefit from illuminating the scene with colored
light. On the other hand, using achromatic light guarantees that material colors are cor-
rectly shown.

– Number of light sources: The HVS preferably assumes that the scene is illuminated
by a single light source. Furthermore, multiple light sources can cause effects which
may be confusing and contradictory to the HVS. Therefore, adding more light sources to
a scene should be generally done only when necessary for resolving some illumination
deficiencies.

20

4 Perceptual Image Quality Function: Principles

In this section we construct a perceptual image quality function for lighting design. More specifically,
guided by our knowledge about the human visual perception of 3D shape and spatial relationships, we
define a mapping fQ that receives as input a 3D scene model M and an image I that was rendered from
this model, and maps its input to a single non-negative scalar value. This value attempts to quantify
the extent to which the image I contains features and exhibits properties that make it easy for a human
observer to comprehend the 3D shape and structure of the scene M . The smaller the value of fQ(I),
the higher the estimated perceptual quality of the image. Naturally, fQ is designed in such a way that
it is strongly dependent upon the lighting in the scene. Changes in the lighting design cause changes in
I , which are in turn reflected in the value of fQ(I) . Thus, the problem of finding an optimal lighting
design for the scene is cast as an optimization problem — finding a local minimum of fQ.

It should be noted that the images I are luminance images, rendered from the model M without
applying any surface textures that might be present in the model. The reason is that we operate
on pixel intensities when quantifying the perceptual quality of an image. Surface textures perturb
these intensities, making it difficult to isolate the effects of changes in lighting on the perceptual
image quality. Therefore, if If the scene does contain surface textures, the lighting design process is
performed ignoring them, but they can be integrated back into the scene once the lighting has been
determined. Further discussion about other types visual information we have chosen not to handle
directly is given in subsection 4.3.

The function fQ is defined as a linear combination of six target terms, each responsible for measuring
a different feature or property in the image:

fQ = fgrad + fedge + fvar + fmean + fhist + fdir (4.1)

More specifically, these six terms have been designed to respond to:

1. Local luminance patterns: The term fgrad measures the magnitudes of the shading gradients
present in the image. The term fedge detects edges in the image and measures their prominence.

2. Pixel luminance statistics: fvar measures the distance of the luminance variance from a target
value. fmean measures the distance of the mean luminance from a target value. fhist measures
the distance of the luminance histogram shape from an ideal equalized histogram.

3. Illumination direction: fdir measures the elevations of the light sources with respect to the
viewing direction.

In subsection 4.1 we describe each of the six target terms in more detail, and illustrate their impact
on the lighting of a scene. The order in which the functions are presented is similar to the order in
which the terms were added into the quality function in the course of our research: each new term was

21

(a) term only (b) Addinggradf edgef (c) Adding varf

(d) Adding meanf (e) Adding histf (d) Adding dirf

Figure 4.1: Quality function: cumulative effect of target terms on the image.
All scenes were rendered using two light sources.

added in order to overcome deficiencies unresolved by the previous terms. For clarity of presentation,
the terms are described at the level of principles. A precise definition for each term will be given in
Section 5.

4.1 Target terms

4.1.1 The shading gradients term fgrad

This term measures the average shading gradient magnitude in the image. Only shading gradients in
geometrically smooth regions of the scene are taken into account here, since gradients at the edges are
accounted for by a different term fedge. The value computed by this term is the difference between the
measured average gradient and a target value representing the maximum average gradient that could
potentially be measured in an image of that particular scene with the given viewing parameters.

22

edgegrad ff + (c) Adding varf (d) Adding meanf (e) Adding histf(a)

Figure 4.2: Quality function: cumulative effect of target terms on the histogram.
Images a-d are the histograms of the images in Fig. 4.1 b-e, respectively. The black background was
excluded.

Example: Figure 4.1a was rendered using lighting parameters obtained by optimizing only the fgrad
term. It is obvious that this term alone is unable to produce satisfactory results: the resulting image is
too bright, and much of the detail is washed-out by the strong illumination.

4.1.2 The detected edges term fedge

Given a 3D scene model it is easy to establish which edges could be visible in an image of the scene,
rendered from a given viewpoint [29, 17]. The extent to which these potential edges are in fact per-
ceived by a human observer, depends mostly on the lighting. The fedge term measures this extent by
applying an edge detection operator at pixels located on potential edges, and summing the responses.

Example: Figure 4.1b was rendered using lighting parameters determined by optimizing the func-
tion fgrad. As expected, several edges that were not visible in 4.1b become clearly visible now. A
secondary result of adding fedge that it reduces the overall excessive intensity caused by using only
a gradient component. The result is still not satisfactory, however, since the image tends to contain
extremely dark (under-illuminated) regions alongside with extremely bright (over-illuminated) ones.
Important details are often lost in both types of these extreme regions. It is difficult to perceive fine
detail in such regions, because of the global brightness adaptation of the visual system, which causes
poor contrast sensitivity in dark and bright areas.

4.1.3 The variance term fvar

In order to overcome the problem of large extreme dark and bright regions, we introduce a term
that inhibits extreme variations in intensity, by measuring the distance between the variance in the
pixel luminances and a target variance value. This target variance must be chosen carefully, so as to
reduce the extreme variations in intensity, but still allow a sufficient dynamic range in which shading
gradations can take place.

23

It should be noted that our use of a variance reducing term is consistent with the low dynamic range
principle used in (non-photorealistic) technical illustration[12].

Example: Figure 4.1c was rendered using lighting parameters determined by optimizing the func-
tion fQ = fgrad+fedge+fvar , using a target standard deviation value of 42 (on a 0 to 255 scale). The
histogram of the image, shown in Figure 4.2b, has a standard deviation of 41.8 that is very close to the
target value (instead of 77.6 in Figure 4.2a). Figure 4.1c shows a major improvement with respect to
the high intensity variance found in 4.1b; However, since there was no constraint on the mean image
intensity it still appears too bright.

4.1.4 The mean term fmean

The overall brightness of an image is an important factor in its appearance. From perceptual quality
point of view, it is undesirable for the image to appear too dark or too bright, since this tends to
weaken the effect of the shading and may hide various features and detail in the scene. Even if no
loss of detail occurs, there is still some subjective notion of an “appropriate” brightness for the image.
For instance, the ship in Figure 4.1c might appear too bright to most observers. In order to control the
overall brightness of the image, we add another target term fmean in order to pull the mean luminance
in the image towards a desired target value.

Example: Figure 4.1d was rendered using lighting parameters determined by optimizing the func-
tion fQ = fgrad+fedge+fvar+fmean , using a target mean value of 124. The optimization achieved
a mean value of 130 (instead of 185 in Figure 4.1c), along with a standard deviation of 40.5. The
histogram is shown in Figure 4.2c. The resulting image 4.1d is correspondingly darker than 4.1c.

4.1.5 The histogram equalization term fhist

Lighting design optimized using the terms introduced so far has the tendency to inhibit shadows and
highlights, often producing large areas with very uniform shading, such as the side of the ship’s body
in Figure 4.1d. This is manifested by the histogram in Figure 4.2c, which shows that most of the pixels
have luminances in a rather narrow range around 160–170. In order to address these deficiencies we
introduce another term fhist designed to make the image histogram closer in shape to a more equalized
histogram. This term tends to increase the variance, conflicting with the fvar term, but in practice it
turns out that it is the proper balance between these two terms that generates the best results.

Example: Figure 4.1e was rendered using lighting parameters determined by optimizing the func-
tion fQ = fgrad + fedge + fvar + fmean + fhist. Comparing this image with Figure 4.1d we see
improved shading on the side of the ship’s body, as well as more highlights (on the sails) and shadows.
Note the corresponding change in the shape of the histogram in Figure 4.2d.

24

4.1.6 Light direction term fdir

Psychophysical tests indicate that it is sometimes easier for the human visual system to correctly
interpret a 3D shape when it is illuminated from above. However, it is not clear how general and
fundamental this phenomenon is. Furthermore, it is not clear what is the necessary elevation above
the horizon, and in many scenes a horizontal illumination direction appears to yield the best results.
Therefore, we decided to add to the quality function a term that constrains the light source to illuminate
the scene from above, but we treat this term as optional, as opposed to the first five terms, which are
considered fundamental. This term simply measures the difference between the elevation of the light
sources and some target elevation angle.

Example: Figure 4.1f was rendered using two light sources: the parameters of the first light were de-
termined by optimizing the complete quality function fQ = fgrad+fedge+fvar+fmean+fhist+fdir.
A secondary light source was fixed at the viewpoint, and could not be modified by the optimization
process. Note that both images 4.1e and 4.1f, are quite satisfactory in terms of the lighting, despite
significant differences in appearance due to the additional constraint on the illumination direction.

4.2 Integration of the target terms

Above we have introduced the six target terms comprising our overall perceptual image quality func-
tion. Each of these terms measures the “quality” of a certain feature in the input image by computing
a distance from an ideal target value. The target terms were designed so as to encourage the following
desired features: The image should conspicuously show the edges of the scene (feature and reflectance
edges), and introduce shading gradients on scene surfaces, such that these gradients are sufficiently
strong to be noticeable. The global appearance of the image should be such that most regions are
displayed by intensities within a limited range, centered at some mid-intensity level, and yet some
shadowed and highlighted regions are still allowed to exist in relatively small regions, or in regions
that do not contain important details and shape information.

Although the resulting quality function may appear to be overconstrained, our experiments have shown
that each and every one of the five fundamental target components is necessary in order to ensure
satisfactory results, as demonstrated by the five examples in Figure 4.3.

4.3 Spatial frequency and color domains

Other channels of information that could be used apart from luminance are chromaticity and spatial
frequencies. We choose not to perform analysis in these domains for the following considerations:

25

(a) Gradient component (b) Mean-intensity term

(c) Edge term (d) Variance term

(e) Equalized histogram term

Figure 4.3: Contribution of target terms.
Each of the five examples (a)–(e) in this figure demonstrated the effect of omitting a single target term
from fQ. The left image in each example was rendered with lighting parameters obtained using the
complete quality function, while the right image shows the effect of excluding a single component.
(a) Excluding the fgrad term causes the right image to appear substantially duller than the left. (b)
Excluding fmean results in a partial loss of highlights and an undesirable shift in material color. (c)
Excluding the fedge term causes one of the cube edges to almost disappear. (d) Exclusion of fvar
results in undesirable under- and over-illuminated regions on the cow. (e) Exclusion of fhist results in
a flatter appearance of the curved side of the violin case.

26

Spatial frequencies spatial frequencies analysis can be mainly used for measurements related to
three classes of information (see also section 3.5): (a) sensitivity of the human visual system to image
content, e.g. contrast sensitivity; Although taking such characteristics into account can increase the
accuracy of perception-based measurements, it still seems to have relatively minor effect to our metric,
and in any case involving such factors is a complex task beyond the scope of this work; (b) geometrical
depth cues, especially texture gradients; Texture maps information is not included in the input to the
metric, and the remaining cues are usually provided by edges which are features available in the
luminance domain. (c) fine image details; Again, details due to texture mapping are not directly
handled and geometrical details are generally indicated by edges and shading.

Chromaticity Color does not play an important role in recovering shape information (see Section
3.5). On the other hand it does provide information about the material of a surface. However, since we
choose to use achromatic light with controlled intensity to illuminate our scenes (Sections 3.5 and 6),
and our idea of well illuminated scene is such that deep shadows do not normally occur, the color of
the materials is guaranteed to be properly displayed. Furthermore, since there is no appropriate metric
to measure distance between two colors, border lines between different material are directly handled
only if they present reflectance borders as well. All these requirements supplies sufficient conditions
for inferring the reflectance map (Section 3.4).

5 Perceptual Image Quality Function: Practice

While the previous section described the principles around which our perceptual quality function was
designed, in this section we give the precise definitions of the target terms, while addressing some of
the issues that must be resolved in order to use this function in practice, in the context of automatic
lighting design. These issues are:

Normalization each of the target terms of fQ must be normalized such that the values they generate
all lie in the same range, e.g., [0; 1]. This is a critical requirement, because if the values produced
by one term are significantly smaller than those produced by the rest, the effect of that term on the
behavior of fQ is minor, and in practice it is as if this component was totally excluded, leading to
deficiencies such as those shown by fig. 4.3. On the other hand, if a term’s values are much larger
than the rest, the quality function will be dominated by this term, and the desired balance will not be
achieved (e.g. Fig. 4.1a).

27

Weights rather than simply taking the sum of the normalized target terms as the quality function fQ,
we assign each target term fi a weight wi , and define

fQ =
X
i

wifi ; where : (5.1)

i 2 fgrad; edge; var; mean; hist; dirg

wi 2 [0; 1]

The weights wi can be used to manipulate the dominance of the different target terms, and thus to
control the sensitivity of the quality function to different features in the image.

Target values: most of the target terms in the previous section were defined as a difference be-
tween some measured quantity in the image, and a target value for that quantity. These target values
determine the desired appearance of the different features in the image. The target values typically
depend on the particular scene and viewing parameters, which means that the quality function should
be uniquely calibrated for each scene and viewing before performing the measurement. Although
some manual calibration is possible, an automatic procedure is obviously preferred. Finding such
procedures that would work fine with a wide range of scenes and viewing parameters is by no means
easy. Furthermore, knowledge about the nature of the rendering algorithm may help achieving a more
accurate calibration. Further in this section we will discuss how to determine the target values for each
target term.

Auxiliary data structures: in order to be able to efficiently evaluate the target terms we will need
an auxiliary data structure, which will be precomputed before the lighting design optimization process
begins. We refer to this data structure as the precomputed image map (PIM). The PIM is essentially
a classification of the pixels in the image into three categories: background pixels, edge pixels, and
surface pixels. Figure 5.1 demonstrates a PIM for the teapot from Fig. 3.2.

5.1 Precise definition of the target terms

5.1.1 The detected edges term fedge

Recall that the goal of this term is to make sure that the lighting parameters are chosen so as to
accentuate, as much as possible, all of the feature and reflectance edges in the scene that can potentially
be visible from the specified viewing position. In other words, if an image pixel has been marked as
an edge pixel in the PIM, we would like the lighting to create an easily perceived edge at that pixel.
To that end, the target for fedge is given by the edge-pixels in the PIM, which represent an edge map
of the image.

28

Figure 5.1: precomputed image map.
Background pixels are drawn in black, edge pixels in white, and surface pixels in gray.

In order to extract the edge map from the scene information, the visibility of edges should first be
determined, and then the visible edges should be mapped onto the 2D image. Deriving feature edges
from the scene can be done in several techniques, such as the modified Appel algorithm introduced by
Markosian[17], or the Z-buffer based technique suggested by Saito et al.[29]. The reflectance edges
can be derived by using an item-buffer of the scene polygons, and marking those pixels on the borders
of adjacent polygons having a reflectance difference of a certain magnitude.

The fedge term is defined as

fedge =
1

N

0
@N �

X
i;j2E

Oedge(pij)

1
A (5.2)

where I is a luminance image, E is the set of edge pixels in the PIM, N is the total number of edge
pixels in the PIM, pij is the (i; j)-th pixel of I and Oedge is an edge detection operator, defined such
that a pixel is detected as an edge if the following two conditions are satisfied [11, 13]:

1. The magnitude of the luminance gradient 5(pij) is above some threshold.

2. A zero-crossing of the Laplacian 52(pij) occurs at the pixel.

The second condition can be formulated by defining a boolean operator z

z(pij) =

8<
:

0 if sign(52(pij)) + sign(52(pkl)) 6= 0
for all (k; l) 2 f(i� 1; j); (i; j � 1); (i; j + 1); (i + 1; j)g

1 otherwise

and the edge detection operator Oedge is given by:

29

Oedge(pij) =

8>>>>>>><
>>>>>>>:

1 tmax < jrpijj
and z(pij) = 1

jrpij j�tmin

tmax�tmin
tmin < jrpij < tmax

and z(pij) = 1
0 jrpijj < tmin

or z(pij) = 0

(5.3)

where tmin and tmax are edge detection thresholds, jrpijj is the magnitude of the gradient at location
pij in the luminance image I , and z is the Laplacian zero-crossing operator given above.

fedge produces values in the range [0; 1]. It achieves the optimal value of 0 only if at all edge pixel
locations the luminance gradient exceeds a threshold of tmax. The worst case value of 1 is obtained if
none of these pixels exhibit a Laplacian zero-crossing with gradient exceeding at least tmin.

5.1.2 The shading gradient term fgrad

The goal of the fgrad term is to encourage the presence of shading gradients at surface pixels, providing
important perceptual cues regarding the shape and the orientation of object surfaces in the scene. The
term measures the average shading gradient over all surface pixels g(I), and computes the difference
between this average and a target value gt, which represents the largest average shading gradient that
can possibly be measured for this scene. Clearly, this target value strongly depends on the particular
scene and viewing parameters: scenes containing shiny curved objects will naturally exhibit much
stronger shading gradients than a scene consisting of matte polyhedra.

Accurate calculation of the target value requires solving an extremum problem involving the full com-
putation process performed by the specific rendering algorithm, with the lighting parameters as free
variables, and does not appear to be analytically solvable for general scenes. Accurate numeric so-
lution would be similar in terms of computational expense to the entire lighting design optimization.
Fortunately, our experience has shown that evaluating the target value with a certain degree of inac-
curacy is tolerable in the sense that the behavior of the quality function is not very sensitive to such
errors. Too rough evaluations, however, may damage the function behavior. In our implementation we
perform an educated guess of the target value, which was found sufficient for satisfactory results. We
base this guess on a single rendering of the scene: the idea is to predict what illumination conditions
would generate the strongest shading gradients, set the lighting parameters accordingly, render the
scene and compute the average shading gradient in the resulting image. Detailed explanation of this
method is given in subsection 6.3.6.

The average shading gradient g(I) is defined as:

g(I) =

vuut 1

N

X
(i;j)2S

jrpijj
2 (5.4)

30

where S is the set of surface pixels in the PIM and N is the total number of these pixels, and the
shading gradient target term is defined as

fgrad(I) =

(
gt�g(I)
(1��)gt

if g(I) � �gT

1 otherwise
(5.5)

The parameter � is used to achieve proper scaling for the values generated by this term. The value
� = 0:3 was found to work well in practice.

5.1.3 The variance term fvar

The fvar term measures the difference between the standard deviation �(I) of the surface pixel lumi-
nances and a target standard deviation value, denoted by �t. The result is normalized by the target
value:

fvar(I) = min(
j�(I)� �tj

�t
; 1) (5.6)

Our experiments have shown that a target standard deviation between 40 and 45 generally produces
satisfactory results. This value is generally valid when all displayed surfaces have uniform reflectance,
and under the assumption that large cast shadows are not suppose to occur. If the scene contains a
wide range of reflectances, the target value is corrected by a factor proportional to the variance in the
reflectances of the visible surfaces. Further implementation details are given in subsection 6.3.6.

5.1.4 The mean term fmean

The fmean term measures the difference between the mean intensity of the surface pixels m(I) and a
target mean intensity, denoted by mt. The result is scaled to the interval [0; 1]:

fmean(I) =
jm(I)�mtj

max(mt; 255 �mt)
(5.7)

Our experiments have shown that a reasonable target value for mt is obtained by setting it to around
150. This value was found suitable for scenes consists of surfaces with “standard” reflectance. This
standard reflectance value was selected arbitrarily (as 1.0 in our system), and for scenes with dif-
ferent reflectance the target value is corrected accordingly in order to create an image faithful to
the reflectance nature of the scene: to avoid over-illumination for low-reflectance scenes and under-
illumination for high-reflectance scenes, if the scene reflectance is lower than the standard, then the
target value is lowered, vice versa. However, to refrain from the inverse illumination deficiencies (i.e.
under-illumination for low-reflectance scenes etc.) this correction should not be linear. For example,
if the image of a scene with reflectance 1.0 is expected to have mean intensity of 150, then the image

31

of a scene with reflectance of 0.2 should not be rendered with mean value of 30 (0:21:0 � 150), which
is too dark an appearance, but rather with some intermediate intensity, e.g. 90. This intensity should
be chosen such that on the one hand the illumination on the scene is strong enough to make it suf-
ficiently visible, and on the other hand the low-reflectance nature of the scene is preserved. Further
implementation details are given in subsection 6.3.6.

5.1.5 The histogram equalization term fhist

The fhist term measures the distance between the histogram h(I) of the luminance image and a target
histogram ht. In an ideal equalized histogram each luminance values occurs an equal number of times
nt = N=255, where N is the number of surface pixels. Denoting by ni the height of the i-th column
in the actual histogram h(I), the distance between h(I) and ht is defined as

d =

vuut 1

255

255X
i=0

(ni � nt)2 (5.8)

While searching for appropriate scaling for this term, we found that neither the ideal histogram, nor
the worst case histogram (where all pixels have the same luminance) occur in practice. Therefore, the
term is scaled using two scaling parameters, �1 and �2, such that 0 < �1 < �2 < 1. The parameter
�1 (�2) defines a more practical worst (best) case histogram, with all pixels equally distributed in
�1 (�2) percent of the columns. Denoting the distance between these two histograms and the ideal
histogram by d�1 and d�2 , the properly scaled version of fhist is defined as

fhist(I) =

8><
>:

1 if d > d�1
d�d�2

d�1�d�2
if d�2 < d < d�1

0 if d < d�2

(5.9)

In our experiments we set �1 = 0:1 and �2 = 0:8 .

5.1.6 The light direction term fdir

This optional target term constrains the light direction to come from above. The input to this term
are the elevations of the light sources, each given by the polar angle �, as shown in Figure 5.2. The
term simply measures the differences between each � and a target polar angle �t. As suggested by
Curran[7], a target angle �t = 45Æ was used in our experiments. The properly scaled fdir term is
defined as

fdir =

�
d
�

if d < �
1 otherwise

(5.10)

32

���������

�	
���

����������������

�

�

�

�����

�

�

Figure 5.2: Spherical coordinate system for light source location.
Light location is defined in object-centered spherical coordinate system by the radius and two angles
related to the vector connecting the center-of-interest (COI) with the light source location: the polar
angle � - angle from the positive Y axis (0::�), and the azimuth ' - angle from the positive Z axis to
the projection on the X-Z plane (0::2�).

where d is the RMS difference between the elevations of the light sources and the target elevation �t:

d =

vuut 1

N

NX
i=1

(�i � �t)2 (5.11)

and � is a scaling constant such that for differences above �Æ the term always return 1.

5.2 Quality function evaluation procedure

Given the scene model, the viewing parameters and the rendering tool, the quality function is first
calibrated by setting the target values and determining the weight of each component. Then lighting
parameters can be set, and the scene is rendered by the rendering tool. The resulting image and lighting
parameters are supplied to the quality function for quality evaluation. We next describe the evaluation
procedure performed by the quality function.

The following data types are used:

pim - precomputed image map Recall from subsection 5 that the PIM is a map classifying each
image pixel as either background, edge, or surface pixel.

33

img - an image object contains rendered image information such as dimensions and array of pixels
with luminance values.

lights contains information about the illumination used to render the scene, and in particular an array
of light source objects with the geometry of each light source used.

Target functions each target function (target term) is implemented as an object (f_grad, f_edge, etc.)
that contains the data required for its computations (target values, scaling factors, etc.), and
some functions. The functionality of these objects is designed such that they are first provided
with relevant information during a loop that passes through the image (or light sources), and
after all the information is accumulated, an evaluation of the final result can be performed.
For convenience, each target function object contains also its weight for the linear combination
that constructs the quality function.

The function Eval receives the image and lights information as input, and performs the quality function
evaluation using the data types described above. The function performs a single pass through the
image, invoking for each pixel the relevant target functions operations (e.g. edge detector, etc.). The
functions then collects the relevant lights geometry information, and finally calls for evaluation of
each target function and returns the linear combination of the results:

float Eval(img, lights)
{
// Loop over image pixels:
N = img.width * img.height; //image is 1D array
for (i=0..N)
{
switch(pim[i])
{
case EDGE:
// Apply edge detection on pixel i and store result:
f_edge.AddEdgePixel(img, i);
break;

case SURFACE:
// Calculate shading gradient in
// pixel i and store result:
f_grad.AddShadePixel(img, i);
break;

case BACKGROUND:
// Skip pixel:
continue loop;

}; //switch

34

// Add pixel i to histogram.
f_hist.AddPixel(img.pixel[i]);

} // ’for’ loop
// Loop over light sources:
L = lights.number_of_lights;
for(i=0..L)
// Not all light sources are
// necessarily to be constrained by fdir:
if (constrain_light_dir(i))
// Accumulate polar angle of light i:
f_dir.AddAngle(lights.light_source[i].teta);

f_grad.Eval();
f_edge.Eval();
f_hist.Eval();
f_mean.Eval(f_hist); //use histogram information
f_var.Eval(f_hist, f_mean); // use hist and mean info
f_dir.Eval();
return f_grad.weight * f_grad.result +

f_edge.weight * f_edge.result +
f_hist.weight * f_hist.result +
f_mean.weight * f_mean.result +
f_var.weight * f_var.result +
f_dir.weight * f_dir.result;

}

Notice that both objects ’f_edge’ and ’f_grad’ may employ operations involving local luminance gra-
dients calculations. To avoid repeated calculation of the gradients at some image location, a gradient
cache buffer is used to store gradients information after it was first calculated.

6 Lighting Design

The purpose of formulating the quality function described in the previous sections was to supply a
comparative tool that can make quality evaluations of images rendered under different illumination
conditions. In this section we utilize the quality function to construct a lighting design system: given
a model of a 3D scene (including geometry and material properties), a set of viewing parameters for a
desired image, and a rendering tool, the system uses the quality function as an objective function, and
by an optimization process it can manipulate any set of lighting parameters to achieve illumination
that best satisfies the function (i.e. minimizes the function).

35

6.1 Methodology

The lighting design system is first drawn as a framework comprises four major components: (i) scene
model (including geometry, materials, viewing and lighting parameters), (ii) a rendering tool, (iii) the
objective function (quality function) and (iv) the process control unit, that actually runs the lighting
design algorithm by interacting with the other components. The process in a nutshell: the input to the
process is the scene geometry, materials and viewing parameters; After configuring and calibrating the
quality function appropriately for the given scene model, the set of lighting parameters to use should
be specified. Each lighting parameter can be declared as either as fixed or free. The free parameters
are those whose values we wish to determine automatically and in an optimal fashion using our system
(searching variable). Next, the initial lighting is constructed such that the fixed parameters are given
values which will remain constant in the course of optimization, and the free parameters are assigned
“first guess” values; Finally, an optimization stage is performed in order to find settings for the free
parameters that minimize the quality function. The core of the optimization is a loop of (i) setting
lights parameters, (ii) rendering, and (iii) evaluating the quality function. This is repeated until
function minimum is reached.

6.2 Process framework

Figure 6 describes the lighting design process and the interaction between the different components.
The system comprises four main components which communicate throughout the process:

(1) Scene model This is basically a storage unit, which holds all the data about scene geometry,
material properties, viewing parameters, and lighting parameters.

(2) Rendering tool A renderer that can receive the scene definition and render it. The result should
be an accessible image pixmap in the computer’s memory. The thick arrow connecting the Scene-
model and the Rendering components in fig. 6 represents the constant communication channel be-
tween them: whenever a rendering should be performed, the scene data is used as input for the ren-
derer.

(3) Quality function A quality function as described in section 4, that servers as the objective func-
tion of the process. The input for function evaluation is the image generated by the renderer, and light
sources locations.

(4) Process control The main module that performs the lighting design process and integrates the
operation of all components. This module should implement procedures for initializing and calibrating
the quality function according to the scene information and the nature of the rendering tool, procedures

36

for specifying the lighting parameters that participate the process, and optimization procedures. These
procedures can be implemented either as automatic procedures, where the computer makes all the
required decisions and sets parameters according to appropriate heuristics and calculations, or as semi-
automatic, where the system interacts with the user and directed by his decisions or settings. In section
6.3 we give an implementation which is in practice a fully automatic system.

Following is an explanation about the stages and steps performed by the lighting design process, as
described by figure 6:

Process input (step 1 in Fig. 6) The process is designed to searching the lighting space for a given
scene geometry, materials and viewing parameters which are supplied as input to the process and kept
fixed throughout the search. Texture mapping information is not received as process input, because
— recall from the quality function formulation — texture mapping should not be rendered when the
image is to be supplied as input to the quality function. The input may also include some predefined
illumination settings, which should participate the rendering as they are given, and not changed by the
process.
Another input parameter is the required image resolution. This is important, because the effect of
illumination may vary with the resolution, due to the change in the actual size of scene features in the
image. On low resolution images, for example, certain features or even entire objects may may not
appear in the image (aliasing).

Lighting parameters (steps 2-4) Specifying the set of lighting parameters that will be used to render
the scene. This may include any kind of illumination parameters supported by the scene model and
the rendering tool, such as the number of light sources, their types, locations and intensities, etc.
Each lighting parameter can be declared as fixed or free parameter. The values of fixed parameters
are set only once, and not changed during the optimization stage. The free parameters will be used
as optimization variables and will be manipulated by the optimization process in order to find their
settings that best satisfies the quality function.
The values of all specified parameters should be chosen by trying to predict values that will best match
the requirements of the quality function, and therefore these values should generally not be chosen
arbitrarily, but rather computed by taking into account the scene data, the nature of the rendering
algorithm, and the configuration of the quality function. The initial proposal to the optimization
variables may significantly affect both the number of iterations required to reach solution, and the
solution itself, which may be taken as the nearest local minimum.

Quality function configuration and setup step 5 - Weights: choose the weights for the linear
combination of the quality function’s component. In particular the weights of the light direction
function fdir which is considered as an optional component, and as a such its weight can be set to 0.
step 6 - Initial target values: set the initial target values for fvar , fmean, and fdir. These initial values
express the desired image appearance. For example, higher target value for fmean will lead to brighter

37

Scene Model
data

V
iew

ing param
eters

G
eom

etry &
 M

aterials

Lighting Specifications

Quality
function

Rendering
tool

Process input:
1. Scene geometry, materials, view,

predefined illumination,
image-resolution.

Quality function setup:
5. Weights
6. Initial target values
7. Scaling constants

Optimization setup:
8. Determine rendering resolution
9. Parameters ranges, steps
10. Termination criteria

Optimization loop:
15. Render
16.Acquire input for quality-function
17. Evaluate quality-function
18. If termination criteria not reached

change searching parameters

Results:
19. Use lighting parameters that

minimized the quality-function

Lighting design process

Quality function calibration:
11. PIM: Precomputed Image Map
12. Shading-gradients target-value
13. Histogram-variance target-value
14. Histogram-mean target-value

Lighting parameters:
2. Choose free and fixed parameters
3. Set values for fixed parameters
4. Set first guess for searching

parameters

Figure 6.1: System framework.
The solid arrows describe the algorithm flow. The dashed arrows describe data transfer between the
components, with the the round mark-points indicate the source of data and arrow-heads indicate the
destination. The thick arrow connecting the Rendering and Scene components indicates the constant
communication channel where each rendering is performed using the scene.

38

image. Another parameter that can be set here is the threshold values used by the edge operator of
fedge. These values may also affect image appearance in terms of the desired acuity of edges. Note
that in this stage the values are set regardless of the particular scene being handled.
step 7 - Scaling constants: set the scaling constants of the target functions (see Section 5).

Rendering resolution and Optimization setup step 8 - Rendering resolution: the optimization
stage involves repeated operations whose computational cost is directly related to the resolution of the
image: rendering, converting image from RGB to luminance, Evaluating fQ, and if the rendering is
hardware-assisted, reading the resulting image from the frame buffer to the main memory (steps 15 to
17). On the other hand, it is often the case that performing the lighting design process with image reso-
lution lower than the original resolution provides the same lighting solution, with significant reduction
in computation time. In practice, there is a threshold resolution where scene features are still present
in the image similarly to the original resolution, whereas lower resolutions introduce aliasing of scene
features which affects the lighting solution found by the process, and makes it inappropriate for the
requested resolution. Therefore, it is desirable to determine an image rendering resolution which is as
close as possible to the threshold resolution mentioned above.
steps 9, 10 - Parameters settings and Termination criteria: Further setup of optimization factors. Ter-
mination criteria may include precision epsilon and other factors that determines tolerance of the
searching process, etc.

Quality function calibration In this stage the scene data and the rendering tool are used to perform
preliminary calibrations and computations that adjust the quality function to the scene and renderer in
use.
step 11 - Precomputed image map: acquire the PIM that are used by the quality function in its evalua-
tion operation, as described in subsection 5. Computing this map involves visible surface determina-
tion and extracting edges from scene geometry and materials.
step 12 - fgrad target: compute the target value for fgrad. As explained in Sec. 5, this value should
be an approximation to the maximum average-shading gradients that can be measured under the given
scene and rendering tool. For this purpose this step may involve a rendering operation.
steps 13, 14 - fvar and fmean targets: as described in Sec. 5, the initial target values for fvar and
fmean (as were set by the previous stage) should be calibrated according to the scene materials and
viewing parameters. That is, the inherent reflection and variance of scene materials should be should
be considered, and the initial target values should be shifted accordingly. For accurate calibration,
visible surfaces determination may be used.

Optimization loop Using the free lighting parameters as optimization variables and the quality func-
tion as an objective function, an optimization process is performed to find the optimal settings for the
lighting parameters, with respect to the function. The process is an iterative search in the multidimen-
sional space of the free variables, looking for a minimum of the quality function. At each iteration,

39

the following steps are repeated:
step 15 - Render: rendering the scene model, using the current lighting specifications.
step 16 - Acquire input: read the pixmap of the rendered image (if needed convert it to luminance
representation), get lights geometry from the scene model, and transfer to the quality function.
step 17 - Evaluate quality function.
step 18 - Change the optimization variables in order to advance the search towards minimum. The
implementation of this step depends on the particular optimization technique chosen. When the op-
timization variables are restricted to light sources positions, directions, and spectral distribution, the
quality function behaves in a continuous manner and a gradient-based technique can be used, such that
at each iteration a search direction is set based upon evaluation of the local gradient, and the solution
then moves in that direction. The situation is more complex if the optimization should also manipulate
parameters such as the number of light sources and their types. Here, a several steps technique that
alternately manipulates sets of parameters should be considered.

In our experiments we have found that the quality function may have several local minima, and the
solution typically converges to the minimum nearest to the initial guess. Unfortunately, putting much
effort in searching the global minimum may dramatically increase the cost of the process, and therefore
expending more effort in establishing the initial proposal and accepting the nearest minimum as the
final lighting solution can be a reasonable compromise.

6.3 Implementation

In this section we describe an implementation of the system described above. It should be emphasized
that any full implementation cannot avoid from using heuristics and procedures that are specific to
the rendering algorithm and the lighting model. In addition, the implementation of some procedures,
including some procedures used by the quality function, is not unique, and several techniques may be
considered and implemented to perform the task required. In particular, we used a very simple and
naive optimization technique, which may need to be further enhanced to improve system performance.

6.3.1 Scene and illumination model specifications

Rendering: we use a straightforward OpenGL-based rendering tool: Z-buffering for hidden surface
removal, and OpenGL’s default shading model [33].
Scene geometry and view: scenes are given by a polygonal mesh, with per-vertex normals. Each
polygon can be assigned different material properties. The system assigns each polygon a unique ID
number. Viewing parameters are specified using OpenGL’s camera model: camera is located at the
viewpoint and looking at the scene’s center-of-interest (COI).
Lighting specifications: light is defined by the three components Diffuse, Specular, and Ambient,
with each has a spectral distribution defined by R, G, and B channels.

Two types of light sources are considered: positional light source, described by its location in the 3-D
space and the spectral distribution of the light components, and directional light source, described

40

by a direction in the 3-D space and spectral distribution (a directional light source is equivalent to
a positional light source at “infinity”). Further in this text the term “position” will be used both for
location of positional light and direction of directional light.

We use spherical coordinates to describe light sources positions, with a coordinates system where the
center-of-interest (COI) is the origin, and the location the viewpoint direction is given by polar angle
� = 90o and azimuth angle ' = 0o (see figure 5.2). Consequently, the location of a positional light is
defined by the triple (r; � ; ') and direction of directional light if defined by the pair (� ; ').
Materials: in correspondent to the description of light, materials are described by the three compo-
nents Diffuse, Specular, and Ambient, and a material roughness factor to describe the behavior of the
specular component (Phong exponent). No texture maps were used.

The scene object supports the following functions, which receive a polygon’s ID number as argument:

� Returns the normal of that polygon:

Normal getPolygonNormal(int polygon_id);

� Calculates some approximation to polygon intensity by transforming RGB representation to
Luminance (using the standard transformation L = 0:3R + 0:59G + 0:11B), and perform
some averaging on material coefficients:

float getPolygonIntensity(int polygon_id);

6.3.2 Reducing the number of free parameters

An elementary operation in the process is declaring a “free light source”, which basically refers to
adding to the illumination a new set of light source specification parameters, and use them as opti-
mization variables. However, generally each free lighting parameter significantly contributes to the
computation time of the optimization stage, since approximating the quality function’s partial deriva-
tive with respect to that variable (as part of gradient calculations) involves an extra rendering and
quality function evaluation. Therefore, we have investigated the tradeoff between the desire to search
the whole lighting parameters space and the need to keep the process as cheap as possible. After
examining various test cases we have reached the conclusion that some light source parameters can be
regularly defined as fixed parameters (i.e. not participate the optimization process), and provided they
are initialized by appropriate heuristics, they do not significantly divert the final illumination solution.
These parameters are as follows:
Light source type and position: all free light sources are defined as positional lights, with a fixed
radius. Positional lights were found to generally yield illumination that better matches the require-
ments of the quality function, compare to directional lights. The radius value should be calculated

41

from the dimensions of the scene and the COI: denote the COI as coi and V the set of scene vertices.
Let d = max(distance(coi; vi)) where vi 2 V , then the radius is r = 2d. This value was found
suitable for the vast majority of scenes examined.
Light source spectral distribution: all light components of a light source are assigned white light
values only. That is, the R,G,B channels of each component are constrained to have the same value:
R = G = B. This guarantees that the scene surfaces are rendered according their original material
definitions, without any bias caused by colored light source. In fact, since the quality function operates
in the luminance domain of the image, rendering under colored illumination is practically meaningless
for its behavior.
Light source ambient component: changing the ambient component independently of the other
lights components simply causes to a shift in the histogram of the image, which directly change the
fmean component of the quality function, but causes no “real” change in illumination patterns. In
practice this can result in redundant iterations around the target mean intensity, which can be re-
duced when the ambient intensity becomes a function of the diffuse intensity, and instead of using
both as optimization free variables we fix the ambient intensity at 15 percent of the diffuse intensity:
ambient = 0:15 � diffuse .

Consequently, each free light source in our system involves 4 free parameters: the two direction
parameters (� ; '), and the parameters of diffuse and specular intensities.

6.3.3 Preliminary geometric computations

In order to calculate initial lighting parameters values (steps 3-4 in fig. 6), derive the PIM (step 11),
and calibrate target values (steps 12-14), the following geometrical data-structures are constructed by
using the rendering tool and the scene model:
(1) Z-Buffer: the buffer generated by the Z-buffer hidden surfaces removal algorithm.

(2) Item-Buffer: a buffer created by rendering the scene with no lighting calculations, but rather
giving each pixel an unique ID value identifying the polygon rendered at that pixel. These values are
supported by the functions defined earlier for the scene model.

The Item-Buffer supports the following functions:

� A function that calculates an approximation of the average intensity of the visible surfaces.
Denote the Item-Buffer as iBuff and the Scene model as scene:

float getAverageIntensity(){
float acc = 0;
int counter = 0;
for (i=0 .. iBuff.size)

42

if (iBuff.value[i] != BACKGROUND){
acc += scene.getPolygonIntensity(iBuff.value[i]);
counter++;

}
return acc / counter;

}

� A function that calculates an approximation of the standard deviation of the visible surfaces:

float getSTDDev(){
float acc = 0;
int counter = 0;
float mean = getAverageIntensity();
for (i=0 .. iBuff.size)
if (iBuff.value[i] != BACKGROUND){
acc +=

(mean - scene.getPolygonIntensity(iBuff.value[i]))2;
counter++;

}
return (acc / counter)

1

2;
}

(3) Diffuse-Directions Map (DDM): a unit sphere, that holds 3-D mark-points on its surface, cor-
responding to the normals of scene’s surfaces. It is constructed by using the Item-Buffer: for each
pixel in the item-buffer, add a 3-D point on the sphere’s surface, such that this point corresponds to
the direction of the normal to the surface rendered at that pixel. The normals directions are expressed
in terms of the two angles (�; '), according to fig. 5.2.
Let us define SphereDir as structure containing the two angles (�; '):

struct SphereDir{
float teta, phi;

};

Denote the Item-Buffer as iBuff , let scene be the scene model object, then the construction of this
data-structure is given by the loop:

for (i=0 .. iBuff.size)
if (iBuff.value[i] != BACKGROUND){
Normal n = scene.getPolygonNormal(iBuff.value[i]);
addPoint(n.getTeta(), n.getPhi());

}

43

Each such point on the direction sphere is simply referred to as Direction. Each direction in the DDM
can be treated as the potential position of a light source for maximum diffuse illumination at the
corresponding pixel.

The DDM support the following operation:

� Cluster the directions on the sphere to n_clusters clusters, and return the centroid of cluster
number clust_num :

SphereDir getCluster(int n_clusters, int clust_num);

(4) Reflection-Directions Map (RDM): another directions sphere, only now for each pixel in the
item-buffer the directions added to the sphere is the ideal-reflection direction, calculated by consider-
ing the viewpoint, the normal and the Z value, at that pixel. The construction of this data-structure is
given by the loop:

for (i=0 .. iBuff.size)
if (iBuff.value[i] != BACKGROUND){
Normal n = scene.getPolygonNormal(iBuff.value[i]);
float z = zBuff.value[i];
SphereDir dir_point = CalcReflection(viewpoint, n, z);
addPoint(dir_point);

}

Each direction in the RDM can be treated as the potential position of a (directional) light source for
maximum specular illumination at the corresponding pixel.

The RDM supports the operation:

SphereDir getSolidAngleDir(int rate);

- given some solid angle patch (expressed by area on the unit sphere surface), return a direction such
that the patch located on the surface of the direction sphere, centered at that direction, is rated as
the rate’th patch that contains highest number of directions (where rate is the function’s argument).
That is, to find the direction with rate 1, all possible locations for solid angle patch on the surface
of the sphere are considered, and the one containing maximum number of directions is selected. To
find the angle rated next, the process is repeated but with no overlap allowed with previously located
patches. The size of the solid angle used by this function is calculated from material information
of the visible surfaces, such that if a directional light source is located at any one of the directions
contained in a solid angle patch of that size, the pixels corresponding to all directions in the patch are
still “significantly” affected by the specular component of that light.

44

6.3.4 Initializing free variables

As explained in sec. 6.3.2, for each free light the parameters that are considered as free variables
are the direction of the light source in terms of the angles (�; '), and the intensity of its diffuse
and specular components. The initial values for these parameters are calculated by using the scene
information and the geometric data structures constructed in sec. 6.3.3.

Light direction

Given that the system has N free lights, the initial values for the n-th light, 0 < n < N are determined
as follows:
The light direction is calculated by first using the Diffuse-Directions-Map (DDM) to get the centroid
of cluster n , and then using the Reflection-Directions-Map (RDM) to find a reflection direction in the
“neighborhood” of that centroid. The idea is to direct illumination on the largest region in the scene
not yet being illuminated by previous lights, and to fine-tune this illumination direction as to capture
specular effects that can occur as result of illuminating from this approximate direction. The following
procedure demonstrates this idea:

SphereDir CalcInitialDir(int light_num)
{
SphereDir diffuse_dir = DDM.getCluster(light_num);
SphereDir reflect_dir;
const MAX_DIRS = 8; //empirical value
float min_angle = 180; //degrees
for (i=0 .. MAX_DIRS){
float curr_angle =
angle(RDM.getSolidAngleDir(i),diffuse_dir);

if (curr_angle < min_angle){
reflect_dir = RDM.getSolidAngleDir(i);
min_angle = curr_angle;

}
return 0.5*diffuse_dir + 0.5*reflect_dir;

}

In practice the weights used to calculate the result direction should be more carefully considered,
and the final direction should not be diverted by more than about 45 degrees from the initial diffuse
direction.

45

Light intensity

The initial light intensities (diffuse and specular components) are calculated for all free lights consid-
ering the target value of fmean the intensities of visible surfaces materials, and the number of lights
sources. Denote the Item-Buffer as iBuff :

float CalcInitialIntensity(int n_lights, float tar-
get_intensity)
{
float average_material = iBuff.getAverageIntensity();
float single_light_intensity =

target_intensity / (0.65 * average_material);
return 1.25 * single_light_intensity / n_lights;

}

6.3.5 Constant initializations

Target terms weights: We used the following empirically determined weights:
wgrad = 0:6

wedge = 0:6

wvar = 0:5

wman = 0:4

whist = 0:55

wdir = 0:5 (or 0, when fdir is disabled).

Initial target value: For pixels intensity in the scale [0..255], the following values were used:

� t_fvar = 42;

� t_fmean = 156;

� t_fdir = 45o

The final value of the first two target values may be corrected according to scene materials properties
(see next subsection).

46

Rendering resolution Constructing a heuristic that finds a good approximation to the threshold
resolution (mentioned in Section 6.2) for each given scene model and viewing parameters is a topic
for future work.

Having examined all of our test models, we were able to choose some common resolution, which is
the smallest resolution that still yielded a satisfactory solution for all test cases. This resolution was
found to be of around 62,000 pixels (e.g., 250 x 250). Therefore, in all our experiments we reduced
the desired image to 62,000 while preserving its aspect ratio, and performed the optimization at that
resolution.

6.3.6 Quality function calibration

PIM The precomputed image map is derived by using the preliminary geometric data-structure com-
puted in sec. 6.3.3 as follows: first the Background pixels are derived directly from the Item-Buffer;
the Edge map is derived by using both the Z-buffer ([29]) and Item-Buffer to account for both feature
and reflectance edges, and the remaining pixels are marked as surface pixels.

fgrad target value To approximate the target value of fgrad , a single rendering is performed under
“extreme” illumination conditions, according to the following procedure:

1. Set a positional light with the following specifications:
direction = average normal of all visible surfaces (achieved by using the Diffuse-Directions Map
from sec. 6.3.3);
radius = 1.5 * the radius calculated in section 6.3.2;
diffuse_intensity = MAX_INTENSITY - average_surface_diffuse, as can be derived from the
ItemBuffer (6.3.3);
specular_intensity = ambient_intensity = 0;

2. Set a directional light source with the following specifications:
direction = the direction that has most effect on the specular component of the visible surfaces.
This is yielded by: RDM:getSolidAngleDir(0) , where RDM is the Reflection-Directions
Map from sec. 6.3.3.
specular_intensity = MAX_INTENSITY - average_surface_specular, as can be derived from the
ItemBuffer (6.3.3);
diffuse_intensity = ambient_intensity = 0;

3. Render and read image.

4. Evaluate the fgrad component of the quality function.

5. Use 1:25fgrad as the target value.

47

fvar and fmean target values: Correct the target values according to the materials properties of the
visible surfaces. Denote iBuff as the Item-Buffer, then:

� t_fvar =t_fvar + 0:15 � iBuff:getSTDDev();

� t_fmean =t_fmean � (0:55 + 0:45 � iBuff:getAverageIntensity()) ;

6.3.7 Optimization

In our current implementation we use a simple steepest descent optimization scheme [24]. To approx-
imate the gradient of the quality function, partial derivatives for the free variables must be computed.
We approximate partial derivatives numerically, by taking differential steps at the direction of each
free variable, rendering, and evaluating the quality function. Once an optimization direction is cho-
sen, the solution advances in that direction until reaching a minimum, and then a new direction is
calculated. When optimizing over more than one free light source, the optimization process alternates
its steps between the different light sources.

6.3.8 Using the fdir component

As described in section 4, the quality function’s term fdir, which is used to constrain illumination to
come from above, is considered as an optional component. In a lot of cases, lighting results achieved
without using the fdir component (weight = 0) are satisfactory. When activating this component,
however, results often suffer from lack of illumination in the “low” regions of the scene. Therefore,
whenever the fdir component is on, a minor fixed light source is added to supply some extra weak
illumination, mainly intended to help illuminating those low regions. More specifically, the following
two options are adopted by the system:

1. fdir disabled (weight=0) - here all participant lights are free lights which are optimized with no
constraints imposed on their directionalities.

2. fdir enabled (weight=0.5) - in this case a fixed light source is added, and positioned at the
viewpoint (� = 90o, ' = 0o), with some weak intensity used for its diffuse component only.
Other light sources are free lights and optimized under the constraint imposed by fdir.

The system is fully configured by determining the exact number of free lights for each of the two cases
above.

48

6.3.9 Full automation

The previous subsections describe the constants, heuristics and procedures used to setup the system.
One substantial parameter that still needs to be handled is the number of free lights involved in the
optimization process. One approach could be to leave this parameter as an optimization variable, and
let the optimization process choose the number of lights yielding the best result. By using the current
system design this could be performed by the following procedure:

1. set number of free lights n = 1;
2. optimize;

keep lighting parameters results as L1;
keep quality function result as F1.

3. repeat{
n = n+ 1;
optimize;
keep results as Ln and Fn;

} until Fn � Fn�1;
4. accept Ln�1 as final lighting results;

This procedure, however, is highly expensive due to the repeated optimizations that should be per-
formed, with each newly added free light significantly increase optimization time. Therefore, another
approach is to determine the number of free lights before the optimization stage, and keep it as a fixed
parameter. A fully automatic system should try to establish some heuristic to make this decision.

Hence, in order to fully configure the system such that all parameters are set and optimization can be
performed two decisions are left to be made:

1. For free light: which of the two options for using fdir (as described in subsection 6.3.8) should
be used.

2. How many free lights should be optimized.

In practice, for all the test cases examined, we found that the problem can be reduced, and considering
only three full system configurations is enough to achieve adequate results:

Configuration1 fdir disabled, and a single free light is optimized according to the specifications
given earlier in this section.

Configuration2 fdir enabled, one free light is optimized and a secondary light is fixed (as described
in the previous subsection).

Configuration3 fdir is disabled, and two free lights are optimized.

49

Hence, the only decision that should be made by the system is which of this configurations should
be used. Cases where fdir is crucial to the illumination are rare, and its effect is more to direct the
solution to a different image appearance, which may be considered preferable by some perceptual
considerations (see sec. 3.5), even if not solving any crucial visual issue. Using two free lights is
often not required, and may even lead to less satisfactory results than the two other configuration. As
a rule, two primary lights should be used only when illumination by a single primary light is found to
be inadequate (recall that scenes illuminated by a single light are more easily and naturally interpreted
by human viewers). By this stage of our work, we did not establish a heuristic that automatically
determines which configuration should be used. Rather, the procedure used is to find solutions by
using the first two configurations, and only if both seem to be inadequate, run the system with the
third configuration.

6.4 Multiresolution

Unsurprisingly, the optimization loop is the main responsible for computation cost of the process. The
performance of each loop iteration is directly affected by two main factors: the resolution of the image
and the performance of the rendering tool. As discussed in the “Optimization setup” stage above, the
rendering resolution during the optimization search can be reduced towards some threshold resolution
which still preserves the illumination effects occurs in the original resolution.

If working with scenes which requires high threshold resolution, or if the rendering algorithm is highly
expensive for the threshold resolution, a multiresolution optimization framework can be found benefi-
cial. With this technique several intermediate low resolutions are determined, and the optimization is
first performed at the lowest resolution, then moves to the next level with the previous solution taken
as the initial proposal.

Our experience shows that performing a multiresolution optimization process significantly reduces the
number of optimization steps performed in the highest resolution, at the expense of an increase in the
total number of steps which are mostly performed in low resolutions, plus a certain overhead caused
by a partial need to re-calibrate the system when moving from one resolution to another.

7 Results

We used the system described in the previous section to automatically determine the lighting design
in a large number of test scenes, with a variety of different materials and different viewing parameters.
In the vast majority of cases the lighting designs produced by the system were found satisfactory in
terms of the visual quality goals we set to ourselves in Section 3. We also found these designs to
favorably compare with the best designs we were able to generate using manual manipulations of the
lighting parameters (the direct design paradigm mentioned in Section 1).

50

To illustrate the effectiveness of our lighting design system, we compare our lighting solutions with
naive lighting settings which do not take into account any particular knowledge about neither the scene
model being illuminated nor the viewing parameters. We chose to use two approaches commonly used
for setting default illumination:

1. Locate a single directional light source at the viewpoint (� = 90o, ' = 0o), producing monochro-
matic light at some average intensity. This setting is denoted as Default1.

2. Locate four directional light sources, located below and above the viewpoint, as follows: (i)
above-left: � = 45o, ' = �45o, (ii) above-right: � = 45o, ' = 45o, (iii) below-left: � = 135o,
' = �45o and (iv) below-right: � = 135o, ' = 45o. This setting is denoted as Default4.

In all the examples brought here the default illuminations suggested above produced unsatisfactory
results, which were significantly improved by the automatic system. The original image resolution
was chosen according to size of scene features.

All examples contains images rendered under the two default illuminations - Default1 and Default4
- and images rendered under illuminations chosen by the optimization process using Configuration1
and Configuration2, as defined in 6.3.9. In cases where using the 2 free lights (Configuration3)
produced an improved result over these two, that result is given too.

Table 1 specifies the performance of the process for all example cases. Each scene model in the table
has a corresponding figure with the set of images as described above.

Table 2 describes the a typical distribution of the operation times of the major process procedures.
The numbers are strongly depend on whether the rendering was performed with or without hardware
support: on the one hand, when hardware support was used, rendering time is significantly improved,
but on the other hand reading the frame-buffer from the graphic adapter (rather than from processor
memory) is significantly slowed down (this was found to be true for all adapters we tried).

51

Model name # of Resolution Figure # of optimization # of renderings Optimization
polygons iterations performed time (sec)

Cube 54 200x200 7.1c 9 38 2.0
7.1d 13 47 2.4

Fork 812 167x117 7.2c 12 41 2.2
7.2d 7 36 2.1

Cow 5,805 186 x 208 7.3c 11 39 3.5
7.3d 4 20 2.3

Baby 12,712 193 x 318 7.4c 5 21 3.2
7.4d 5 25 3.6

Cherries 824 238 x 293 7.5c 5 24 2.8
7.5d 5 22 2.5

Dagger 4,981 448 x 173 7.6c 7 29 3.9
7.6d 7 27 3.7

Sword 1,520 339 x 220 7.7c 7 30 4.1
7.7d 4 40 4.2
7.7e 6 48 4.9

Foot 4204 267x199 7.8c 6 28 3.9
7.8d 4 24 2.4

Air-boat 6686 695 x 379 7.9c 7 31 4.1
7.9d 5 27 3.6

Galleon 4,699 362 x 389 7.10c 5 25 3.3
7.10d 8 35 4.8
7.10e 9 57 6.5

Paddle boat 11,435 492 x 388 7.11c 11 39 5.0
7.11d 5 22 4.0
7.11e 5 48 8.3

Table 1: Results of the lighting design process for various scene models. For each scene the process
was performed using the system configurations described in sec. 6.3.9. Images of the resulting ren-
dering of each model are brought in a corresponding figures (as specified in the table). Times were
measured on a 866 MHz Pentium III PC with an Nvidia GeForce2 graphics accelerator.

52

(a) Default - 1 light source (b) Default - 4 light sources

(c) Optimized - Configuration1 (d) Optimized - Configuration2

Figure 7.1: Cube.
Default illuminations: both (a) and (b) introduce totally uniform shading on cube faces and fails to
display all edges.
Optimized illuminations: (c) all edges are prominent; shading gradients on cube faces convey en-
hanced 3-D impression.

53

(a) Default - Configuration1 (b) Default - 4 light sources

(c) Optimized - 1 light source (d) Optimized - Configuration2

Figure 7.2: Fork.
Default illuminations: (a) and (b) fails to capture material and shape information in several locations
mainly due to lack of illumination (a) and too flat patterns (b).
Optimized illuminations: (c) introduce major improvement by both highlights and shadows; (d) same
improvements with illumination coming from above.

54

(a) Default - Configuration1 (b) Default - 4 light sources

(c) Optimized - Configuration1 (d) Optimized - Configuration2

Figure 7.3: Cow.
Default illuminations: (a) shadowed regions hide shape information, and image is generally too dark,
and (b) flat illumination lacking of shading patterns - both shape and edges are lost.
Optimized illuminations: (c) introduce major improvement in general brightness; All shape features
are visible. (d) similar qualities with illumination coming from above;

55

(a) Default - Configuration1 (b) Default - 4 light sources

(c) Optimized - 1 light source (d) Optimized - Configuration2

Figure 7.4: Baby.
Default illuminations: (a) body shape and details are lost in the shadowed far side and in the near arm
and hand; (b) too much illumination yields in blurred appearance.
Optimized illuminations: (c) and (d) all body parts are properly illuminated and deficiencies from
default cases are removed.

56

(a) Default - Configuration1 (b) Default - 4 light sources

(c) Optimized - 1 light source (d) Optimized - Configuration2

Figure 7.5: Cherries.
Default illuminations: (a) front cherry lacks highlight, while highlight on back cherry is very dim;
Both cherries somewhat lack shading gradation and 3-D appearance is of limited prominence; Some
edges around the contact point of front cherry and stem are invisible; Stems appear dark and hardly
any shape information is conveyed. (b) “contradictory” illumination, where 3-D impression is lost due
to the excess in illumination directions; Some edges between the cherries and between front cherry
and stem are not prominent enough or even invisible; Shape information of stems is lost due to too
uniform shading.
Optimized illuminations: (c) highlights and shading gradation on both cherries and stems convey
shape information and creates vivid 3-D impression; All edges are prominent; (d) shading on stems
suffer from the fact that primary illumination arrives from above (� = 56o) and is somewhat deficient,
but still improved relatively to default cases; cherries have similar qualities to (c).

57

(a) Default - Configuration1 (b) Default - 4 light sources

(c) Optimized - 1 light source (d) Optimized - Configuration2

Figure 7.6: Dagger.
Default illuminations: (a) and (b) shape can be perceived although illumination on blade is too flat
and can be enhanced; some details are missing in the base of the blade and shield;
Optimized illuminations: (c) and (d) perception of blade shape and material is enhanced, details miss-
ing in previous images are more prominent.

58

(a) Default - Configuration1 (b) Default - 4 light sources

(c) Optimized - 1 light source (d) Optimized - Configuration2

(e) Optimized - Configuration3

Figure 7.7: Sword.
Default illuminations: (a) and (b) introduce almost uniform shading on both the blade and hilt, and
fails to communicate shape and material information, as well as some fine details on the hilt. Edges
between hilt and shield are insufficiently prominent.
Optimized illuminations: (c) introduce major improvement in blade and hilt illumination, but at the
cost of neglecting the shield, where shape information is lost in the dark shade; (d) suffers from the
same deficiency, although more light reaches the shield; Adding a second optimized light (e) enables
proper illumination on the shield too.

59

(a) Default - Configuration1 (b) Default - 4 light sources

(c) Optimized - 1 light source (d) Optimized - Configuration2

Figure 7.8: Foot.
Default illuminations: (a) dark regions on most finger bones hide fine shape and geometry information;
(b) here shape information is deficient due to weak or missing shading gradients on some of the finger
bones.
Optimized illuminations: (c) and (d) successfully communicate the geometry of the finger bones.

60

(a) Default - Configuration1 (b) Default - 4 light sources

(c) Optimized - 1 light source (d) Optimized - Configuration2

Figure 7.9: Air-boat.
Default illuminations: (a) fails to display the the different 3 levels of the boat’s floor: all three are
displayed in constant dark intensity and edges are invisible; this deficiency occurs also with the top
right face of the boat’s frame; back of the chair lacks any shading gradients yielding in poor commu-
nication of its curved shape; (b) introduce too uniform shading resulting in reduced 3-D impression;
floor levels are hardly noticeable; some edges on boat’s side are lost; fails to clearly display the engine
construction on the back.
Optimized illuminations: (c) All edges are visible; floor levels are clearly separated due to different
shading intensities and more prominent edges; shading-gradients on the back of the chair helps to
communicate its curved shape. All parts of engine construction are conspicuous; (d) Similar qualities
to (c), however engine construction is somewhat less conspicuous.

61

(a) Default - 1 light source (b) Default - 4 light sources

(c) Optimized - Configuration1 (d) Optimized - Configuration2 (e) Optimized - Configuration3

Figure 7.10: Galleon.
Default illuminations: (a) illumination is too flat on side of ship’s body and on back sales. some details
appear blurred and edges at front and back sales are not prominent enough; and (b) almost uniform
shading on most ship’s regions.
Optimized illuminations: (c) and (d) introduce major improvement in both ship’s body and sales;
Adding a second optimized light (e) enables highlights on sales.

62

(a) Default - Configuration1 (b) Default - 4 light sources

(c) Optimized - 1 light source (d) Optimized - Configuration2

(e) Optimized - Configuration3

Figure 7.11: Paddle-boat.
Default illuminations: (a) left side appears blurred and details are lost. Details are also lost in the
three surrounding panels and top part of the chimneys; (b) extra illumination causes all image to
appear blurred.
Optimized illuminations: (c) and (d) introduce major improvement in left side, panels and chimneys;
some minor deficiencies are found on the wings of the wheel, where not all edges are sufficiently
prominent. Although this is mostly due to insufficient geometry specifications of the model (yielding
problems with the normals), adding a second optimized light (e) is still able to overcome it.

63

Stage Procedure % time of process - % time of process -
No hardware support With hardware support

Preliminary operations (Total) 15 15
Optimization Lighting parameters calculations 1 1

Rendering 39 20
Read frame buffer 22 33
Quality function 23 22

(Total) 85 85

Table 2: Time distribution in the lighting-design process with and without using hardware-support
for rendering. Process was performed for the cow model with resolution of 200x200, using single
free-light (configuration1). For both cases optimization process took 8 iterations and 27 renderings,
and total time was approximately the same (4 seconds).

8 Summary and Future work

We have presented a fully automatic lighting design system for traditional (photorealistic) rendering
of 3D models. The lighting designs are obtained by optimizing a perception-based image quality
function, yielding comprehensible images of 3D object, which effectively communicate information
about shapes, materials, and spatial relationships.

There are many promising directions for future research, some of which are outlined in the remainder
of this Section.

System automation:

The automation of the system can be further enhanced by developing methods that based on analysis
of the scene, viewing-parameters and perhaps the rendering algorithm, can automatically determine
the preferred number of free light-sources, and recommend whether the optional fdir term should be
enabled (currently, a high-level decision should be made to select from a choice of several system
configurations (Section 6.3.9)). Another issue that is not adequately handled is the selection of the
threshold resolution for performing efficient optimization (Section 6.3.3).

Extending lighting model:

Extending the system to work with global illumination models requires proper handling of new effects
such as cast shadows, inter-reflections and refraction, both on the level preliminary scene analysis and
system setup, and the level of image analysis and quality evaluations. An interesting starting point
can be to try and apply the lighting solution found by the current system to such global illumination
algorithm. We believe that for a wide range of cases these solution will remain satisfactory.

64

If using a “heavy” rendering algorithm, multi-resolution optimization technique will be probably
found beneficial to reduce the number of renderings required in the higher resolution levels. An-
other approach can be using a reduced-rendering : under the assumption that full lighting calculation
at each iteration may not be required to achieve an adequate evaluation for the optimization process,
a reduced version of the rendering algorithm may be used to save redundant lighting calculation time
(e.g. reduced recursion depth in Raytracing, or reduced number of patches in Radiosity). Furthermore:
it seems that for a wide variety of scene definitions, the effects of direct illumination may be adequate.
Full lighting calculation can then be applied either at a fine-tuning stage of the optimization, or only
to render the final image.

In addition to using other lighting models, using other lighting parameters can be considered, and in
particular other light types such as spotlights may be also considered.

Types of scene models:

The performance and behavior of the system should be further examined for scenes highly reach with
small detail, and scenes that are completely occupied with objects and surfaces (e.g. indoor scenes).

Optimization:

More sophisticated optimization methods should be considered and implemented. Using techniques
that reduces the number of iterations performed, as well as the total number of function-evaluations
required (and consequently number of renderings too) may significantly enhance system performance.

View-independent solutions:

Extending the system to find view-independent lighting solutions can be very useful. However, this is
a difficult task, due to the fact that the core of the system is an analysis performed on the 2-D image
created for the specific viewing parameters supplied.

Quality function:

Clearly, the formulation and implementation given for the quality function is not unique and definitive.
Although several methods of measuring and evaluating the visual and geometrical information were
examined, applying different techniques may be proven beneficial.

One example is the use of more accurate edges evaluation technique, which takes into account a scale
of expected prominence for various edges.

Another example is to elaborate the shading-gradients term such that it expresses a particular require-
ment for enhanced shading gradients in regions of high-curvature of surfaces.

65

Using further visual information such as spatial frequencies or colors (Section 3) for perceptual quality
evaluation may be considered.
Various features of the HVS, which affects the response of human to the visual information (Section
3), may be integrated into the quality metric. For instance, the non-linear response and threshold
sensitivity of the HVS to luminance contrast [13] [4] can be used to enhance the accuracy of measuring
the effect of shading gradients.

References

[1] E.H. Adelson and A.P. Pentland. The perception of shading and reflectance. In D. Knill and
W. Richards, editors, Perception as Bayesian Inference, chapter 11. Cambridge University Press,
1996.

[2] Vicki Bruce and Patrick R. Green. Visual Perception: Physiology, Psychology and Ecology,
chapter 5–9. Lawrence Erlbaum Associates Ltd., 2nd edition, 1991.

[3] Patrick Cavanagh and Yvan G. Leclerc. Shape from shadows. Journal of Experimental Psychol-
ogy: Human Perception and Performance, 15(1):3–27, 1989.

[4] Alan Chalmers, Scott Daly, Ann McNamara, Karol Myszkowski, and Tom Troscianko. Image
quality metrics. Course notes, Siggraph 2000, July 2000.

[5] Stanley Coren and Lawrence M. Ward. Sensation and Perception. Harcourt Brace Jovanovich,
third edition, 1989.

[6] Antonio Cardoso Costa, A. Augusto de Sousa, and F. Nunus Ferreira. Lighting design: A goal
based approach using optimization. In Rendering Techniques ’99, pages 317–328. Springer-
Verlag, 1999.

[7] William Curran and Alan Johnston. The effect of illuminant position on perceived curvature.
Vision Research, 36(10):1399–1410, 1996.

[8] Karen K. De Valois and Frank Kooi. The role of color in spatial vision. In L. Harris and Michael
Jenkin, editors, Proc. 1991 conference on spatial vision in humans and robots., pages 149–159.
Cambridge University Press, 1993.

[9] R. L. De Valois and K. K. De Valois. Spatial Vision. Oxford University Press, Oxford, UK,
1988.

[10] Andrew S. Glassner. Principles of Digital Image Synthesis, chapter 1 - The human visual per-
ception. Morgan Kaufmann, 1995.

[11] Rafael C. Gonzalez and Paul Wintz. Digital image processing. Addison-Wesley, 1987.

66

[12] Amy Gooch, Bruce Gooch, Peter Shirley, and Elaine Cohen. A non-photorealistic lighting model
for automatic technical illustration. In Computer Graphics Proceedings, Annual Conference
Series, pages 447–452, August 1998.

[13] Anil K. Jain. Fundamentals of Digital Image Processing, chapter 3, 9. Prentice-Hall, Englewood
Cliffs, NJ, 1989.

[14] John K. Kawai, James S. Painter, and Michael F. Cohen. Radioptimization — goal-based ren-
dering. In Computer Graphics Proceedings, Annual Conference Series, pages 147–154, 1993.

[15] Jan J. Koenderink. What does the occluding contour tell us about solid shape? Perception,
13:321–330, 1984.

[16] Pascal Mamassian and Daniel Kersten. Illumination, shading and the perception of local orien-
tation. Vision Research, 36(15):2351–2367, 1996.

[17] Lee Markosian, Michael A. Kowalski, Samuel J. Trychin, Lubomir D. Bourdev, Daniel Gold-
stein, and John F. Hughes. Real-time nonphotorealistic rendering. In Turner Whitted, editor,
SIGGRAPH ’97 Conference Proceedings, pages 415–420. Addison Wesley, August 1997.

[18] J. Marks, B. Andalman, P. A. Beardsley, W. Freeman, S. Gibson, J. Hodgins, T. Kang, B. Mirtich,
H. Pfister, W. Ruml, K. Ryall, J. Seims, and S. Shieber. Design Galleries: A general approach
to setting parameters for computer graphics and animation. In SIGGRAPH ’97 Conference Pro-
ceedings, pages 389–400. Addison Wesley, August 1997.

[19] D. Marr. Vision. A Computational Investigation into the Human Representation of Visual Infor-
mation. Freeman, New York, 1982.

[20] D. Marr and E. Hildreth. Theory of edge detection. Proceedings Royal Society of London
Bulletin, 204:301–328, 1979.

[21] Ennio Mingolla and James T. Todd. Perception of solid shape from shading. Biological Cyber-
netics, 53:137–151, 1986.

[22] Pierre Poulin and Alain Fournier. Lights from highlights and shadows. In David Zeltzer, editor,
Proceedings of the 1992 Symposium on Interactive 3D Graphics, pages 31–38, March 1992.

[23] Pierre Poulin, Karim Ratib, and Marco Jacques. Sketching shadows and highlights to position
lights. In Proceedings of Computer Graphics International 97, pages 56–63, 1997.

[24] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical
Recipes in C: The Art of Scientific Computing. Cambridge University Press, second edition,
1992.

[25] Vilayanur S. Ramachandran. Perceiving shape from shading. Scientific American, pages 58–65,
August 1988.

67

[26] Vilayanur S. Ramachandran. Perception of shape from shading. Nature, 331(14):163–166, 1988.

[27] Mahesh Ramasubramanian, Sumanta N. Pattanaik, and Donald P. Greenberg. A perceptually
based physical error metric for realistic image synthesis. Computer Graphics, 33(Annual Con-
ference Series):73–82, 1999.

[28] Holly Rushmeier, George J. Ward, Christine Piatko, Phil Sanders, and Bert Rust. Comparing
real and synthetic images: Some ideas about metrics. In Patrick M. Hanrahan and Werner Pur-
gathofer, editors, Rendering Techniques ’95, Eurographics, pages 82–91. Springer-Verlag Wien
New York, 1995.

[29] Takafumi Saito and Tokiichiro Takahashi. Comprehensible rendering of 3-D shapes. Computer
Graphics, 24(4):197–206, 1990.

[30] Chris Schoeneman, Julie Dorsey, Brian Smits, James Arvo, and Donald Greenberg. Painting
with light. In Computer Graphics Proceedings, Annual Conference Series, 1993, pages 143–
146, 1993.

[31] James T. Todd and Ennio Mingolla. Perception of surface curvature and direction of illumi-
nation from patterns of shading. Journal of Experimental Psychology: Human Perception and
Performance, 9(4):583–595, 1983.

[32] R. J. Watt and M. J. Morgan. A theory of the primitive spatial code in human vision. Vision
Research, 25:1661–1674, 1985.

[33] Mason Woo, Jackie Neider, and Tom Davis. OpenGL Programming Guide. Addison-Wesley
Developers Press, second edition, 1997.

68

