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ABSTRACT

We introduce a new approach for the computation of view-
independent solutions to the diffuse global illumination problem in
polyhedral environments. The approach combines ideas from hier-
archical radiosity and discontinuity meshing to yield solutions that
are accurate both numerically and visually. First, we describe a
modified hierarchical radiosity algorithm that uses a discontinuity-
driven subdivision strategy to achieve better numerical accuracy and
faster convergence. Second, we present a new algorithm based on
discontinuity meshing that uses the hierarchical solution to recon-
struct an object-space approximation to the radiance function that is
visually accurate. Our results show significant improvements over
both hierarchical radiosity and discontinuity meshing algorithms.

CR Categories and Subject Descriptors: I.3.3—[Computer
Graphics]: Picture/Image Generation; I.3.7—[Computer Graph-
ics]: Three-Dimensional Graphics and Realism.

Additional Key Words and Phrases: diffuse reflector, discon-
tinuity meshing, global illumination, hierarchical radiosity, Mach
bands, photorealism, quadratic interpolation, radiance function, ra-
diosity, reconstruction, shadows, view-independence.

1 INTRODUCTION

Computing solutions to the global illumination problem is an essen-
tial part of photorealistic image synthesis. In this paper, we are in-
terested in computing view-independent (or object-space) solutions
for global illumination. Such solutions provide an approximation to
the radiance function across each surface in the environment. Once
a solution is computed, images from any viewpoint can be rendered
with a relatively small additional effort. These methods are particu-
larly attractive for applications such as architectural design, interior
design, lighting design, illumination engineering, and virtual real-
ity, in which the need for multiple views or walk-throughs of static
environments arises.

So far, most view-independent methods have been derived from
the radiosity method that was originally developed to solve radia-
tive heat transfer problems [23]. Computer graphics researchers
adopted this method to compute the global illumination of diffuse

polyhedral environments [10, 7, 19]. Radiosity has been extended
and improved dramatically since, but there is still much to be done
before the method can become a useful tool for its intended users.

The goal of our research is to develop an efficient radiosity system
that satisfies the following requirements:

Objective (numerical) accuracy: Solutions produced by the sys-
tem should converge rapidly to the exact solution. This requirement
may seem obvious, however, in the computer graphics community
results of simulations are too often judged solely by their visual ap-
pearance.

Subjective (visual) accuracy: While visual appearance should not
be used to judge the objective accuracy of the simulation, it is still
very important, since the image is the final product. Clearly, ac-
curate visual appearance can be achieved through numerically ac-
curate simulation (if the underlying model is physically accurate.)
Unfortunately, experience has shown that the human visual system
is extremely sensitive to small perceptual errors that are difficult to
quantify. The simulated environments can be very complex and,
therefore, the computation of ultra-accurate solutions is generally
impractical. Thus, we must have means of producing visually ac-
ceptable images even from coarse solutions.

Ease of control: (i) The system should be controllable by users who
are not necessarily familiar with its inner workings. Therefore, the
control parameters should be intuitive and small in number. (ii) In
many cases (such as early design stages) the user is interested in a
quick solution, even if not exceedingly accurate. At other times, one
might be willing to wait overnight for a reliable solution. Therefore,
the system should provide the user with the option to trade speed for
accuracy.

Most radiosity systems do not satisfy any of these requirements.
There are no error bounds on the solutions, because approximations
are often used without justifications regarding their impact on the
accuracy of the results. The resulting images typically exhibit many
visual artifacts such as Mach bands, light and shadow leaks, jagged
shadow boundaries, and missing shadows. Radiosity systems are
seldom user-friendly and require massive user intervention: typi-
cally, a time consuming trial-and-error process is required to pro-
duce an image that looks right. Baum et al. [1] and Haines [12]
provide good discussions of the various pitfalls of radiosity.

In this paper we present a new radiosity method, which comes
closer to satisfying our goals. The new method combines two re-
cently developed approaches: hierarchical radiosity [14] and dis-
continuity meshing [15, 18]. First, we present an improved hierar-
chical radiosity algorithm that uses a discontinuity-driven subdivi-
sion strategy to achieve better numerical accuracy and faster conver-
gence. Second, we describe a new algorithm based on discontinuity
meshing that uses the hierarchical solution to reconstruct a visually
accurate approximation to the radiance function. Thus, results of



high visual quality can be obtained even from coarse global illumi-
nation simulations. Previous attempts to improve the visual quality
of radiosity solutions were described by Nishita and Nakamae [19],
Kok and Jansen [17], Chen et al. [4], and Reichert [20]. In all of
these cases, however, the improvement takes place in image space,
after the view and the resolution have been specified. Our method,
instead, operates entirely in object space, and the improved solution
is view-independent.

2 HIERARCHICAL RADIOSITY

The traditional radiosity approach [10, 7] discretizes the environ-
ment into n elements and solves a linear system of n equations,
where the radiosities of the elements are the unknowns. The most
serious drawback of this approach is the need to compute the O(n2)
coefficients of the linear system, corresponding to the interactions
(transfers of light energy) between pairs of elements. In addition to
the overwhelming computational complexity, most of these compu-
tations are performed to unnecessarily high accuracy, while some
are not sufficiently accurate.

Hierarchical radiosity (HR) [14] overcomes these problems by
decomposing the matrix of interactions into O(n) blocks, for a given
accuracy. These blocks correspond to interactions of roughly equal
magnitude, and the same computational effort is required for com-
puting each block. HR operates by constructing a hierarchical sub-
division of each input surface. Each node in the hierarchy repre-
sents some area on the surface. Two nodes are linked together if
the interaction between their corresponding areas can be computed
within the required accuracy; otherwise, the algorithm attempts to
link their children with each other. Each link corresponds to a block
in the interaction matrix.

HR has several important advantages: it is fast, the errors in its
approximations are bounded, and it is controlled by only two param-
eters: the error tolerance and the minimum node area. The smaller
the values of these parameters, the more accurate (and expensive)
the solution becomes. Thus, HR satisfies our goals of objective ac-
curacy and ease of control.

However, the HR algorithm still suffers from shadow leaks and
jagged shadow boundaries. This occurs because surfaces are sub-
divided regularly, not taking into account the geometry of the shad-
ows. HR uses point sampling to classify the inter-visibility between
two surfaces, so it is prone to missing small shadows altogether. Of
course, as the user-specified tolerance becomes smaller, the solution
becomes more accurate, and the visual artifacts decrease. Never-
theless, images of high visual quality can require solutions of pro-
hibitively high accuracy.

The number of links created by HR is O(n + m2) where n is the
final number of nodes and m is the number of input surfaces. As
the complexity of the environment increases, the m2 term eventu-
ally becomes dominant, drastically reducing the efficiency of the
algorithm. As pointed out by Smits et al. [22], this problem could
be solved by grouping the input surfaces into higher level clusters.
This is an interesting research topic by itself, and it will not be pur-
sued in this paper.

3 DISCONTINUITY MESHING

Radiosity methods typically attempt to approximate the radiance
function with constant elements and use linear interpolation to dis-
play the result. The actual radiance function, however, is neither
piecewise constant nor piecewise linear. It is usually smooth, ex-
cept along certain curves across which discontinuities in value or in
derivatives of various order may occur. Discontinuities in radiance
functions are discussed in detail elsewhere [16, 15, 18]; what fol-
lows is a brief summary of the various types of discontinuity and
their causes.

The most significant discontinuities are discontinuities in the ra-
diance function itself (denoted D0). They occur along curves of con-
tact or intersection between surfaces. Discontinuities in the first and
the second derivatives (D1 and D2, respectively) occur along curves
of intersection between surfaces in the environment and critical sur-
faces corresponding to qualitative changes in visibility, or visual
events. Visual events in polyhedral environments can be classified
into two types [9]: EV events defined by the interaction of an edge
and a vertex, where the critical surface is a planar wedge; and EEE
events defined by the interaction of three edges, where the critical
surface is a part of a quadric. Discontinuities of higher than second
order are also possible [16].

Discontinuities are very important both numerically and visually:
all the boundaries separating unoccluded, penumbra, and umbra re-
gions correspond to various discontinuities. When a discontinuity
curve crosses a mesh element, the approximation to the radiance
function over that element becomes less accurate. The resulting
errors usually correspond to the most visually distracting artifacts
in radiosity images. The traditional radiosity approach uses adap-
tive subdivision [8] to reduce these errors, however there are several
problems with this approach. First, the user must specify an initial
mesh that is sufficiently dense, or features will be lost. Second, the
shape of the mesh is determined by the geometry of the surface be-
ing meshed, and the discontinuities are not resolved exactly. As a
result, many small elements are created as the method attempts to
converge to shadow boundaries. Furthermore, although the result-
ing solution may be of adequate visual quality for some views, arti-
facts may become visible as the view changes (e.g., when we zoom
in on a surface.)

Discontinuity meshing (DM) algorithms compute the location
of certain discontinuities and represent them explicitly, as bound-
aries, in the mesh. This leads to solutions which are both numeri-
cally and visually more accurate. Another advantage is that higher
order elements can be used much more effectively in conjunction
with discontinuity meshes [16]. Several algorithms have been de-
scribed that use the idea of discontinuity meshing to various extents
[1, 3, 6, 15].

Recently, a progressive radiosity DM algorithm was described
by the authors [18]. The meshing in this algorithm is automatic.
Using analytical visibility and form factor computations followed
by quadratic interpolation it has produced radiosity solutions of im-
pressive visual accuracy. This algorithm was also shown to be nu-
merically accurate [24].

However, this method is too expensive for computing converged
solutions of complex environment and only offers limited user con-
trol in trading off speed for accuracy. The main reason for this is
that all energy transfers are computed very accurately, regardless of
their magnitude.

4 A COMBINED APPROACH

Hierarchical radiosity and discontinuity meshing seem to comple-
ment each other in their strengths and weaknesses: HR is fast, but
the visual appearance of the results can be disappointing; DM, on
the other hand, has produced visually accurate results, but so far
it has been too expensive for simulation of complex environments.
This observation motivated us to look for ways of merging the two
methods. Our investigation resulted in the following two-pass ap-
proach:

The global pass uses a modified HR algorithm to compute a ra-
diosity solution within a prespecified tolerance. Instead of regular
quadtree subdivision, the modified algorithm subdivides surfaces
along discontinuity segments. This improves the numerical accu-
racy and results in faster convergence.
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Figure 1: The structure of the new radiosity system

The local pass uses DM and quadratic interpolation to refine the
approximation to the radiance function locally on each surface in
the environment. Thus, the solution computed by the global pass is
transformed into a more visually accurate form.

When the computation is arranged in this way the simulation be-
comes more efficient. The global pass need not be concerned with
visual accuracy. This eliminates the need to maintain a topolog-
ically connected mesh, to prevent T-vertices, or to use extremely
fine subdivision around shadow boundaries, since this has little ef-
fect on the global distribution of light in the environment. The local
pass, on the other hand, can create as many elements as necessary
for a high quality reconstruction of the radiance function, without
overburdening the global illumination simulation. As a result, it is
possible to produce images of high visual accuracy even from quick
simulations.

To test our approach we have implemented a new radiosity sys-
tem whose overall structure is shown in Figure 1. The global and
the local passes are discussed in detail in the next two sections. In
the rest of this section we briefly describe the remaining parts.

The initial linking stage creates for each input polygon a list of
links to all the polygons that are visible from it. For each link it
is determined whether the two polygons are completely or partially
visible to each other. This creates a starting point for the global pass,
which proceeds to refine these links as needed. We test visibility
between two polygons using a combination of shaft-culling [13] and
the ray-tracing algorithm that Hanrahan et al. [14] used.

The discontinuity location stage computes the location of all the
D0 discontinuities, since these are typically responsible for the most
severe errors (both numerically and visually.) In most environments
the direct illumination by primary light sources is responsible for
the most perceptible illumination details. Therefore, all of the D1

and D2 discontinuities caused by EV events involving the primary
light sources are computed as well. The computed discontinuities
are henceforth collectively referred to as primary discontinuities.

EEE events are more difficult to handle because their correspond-
ing critical surfaces are curved, rather than planar. However, the
resulting discontinuities always lie within penumbra regions, and
never define the outer boundaries of a shadow. For these reasons,
we excluded EEE events from our current implementation.

We described the discontinuity location algorithm in a previous
paper [18]. Tampieri [24] provides a more detailed description of
this algorithm. Heckbert [15] and Teller [25] describe alternative
algorithms for locating discontinuities. Teller’s algorithm is the only
one capable of handling EEE events.

5 THE GLOBAL PASS

In order to understand how the accuracy of HR can be improved, we
must examine its sources of error. Consider two nodes s and r linked
together by the HR algorithm. Let Brs(x) denote the actual radiosity
due to node s at point x on node r. The algorithm approximates this
radiosity by a constant function

Brs(x) � �
Brs = �

rBsFrsVrs

where �
r is the reflectivity of node r; Bs is the average radiosity of

node s; Frs is the form factor from r to s; and Vrs is the inter-visibility

factor between r and s (the visible fraction of the area of s, averaged
over r).

We are interested in bounding the error between the computed
and the actual radiosities

Ers = sup
x � r

�� Brs(x) � �
Brs

�� (1)

To that end, we define the following upper and lower bounds:

Bmin
s = infx � s Bs(x) Bmax

s = supx � s Bs(x)
Fmin

rs = infx � r Fxs Fmax
rs = supx � r Fxs

Vmin
rs = infx � r Vxs Vmax

rs = supx � r Vxs

where Bs(x) is the radiosity at point x on s; Fxs is the form factor from
point x to s; and Vxs is the fraction of the area of s visible from x.
Clearly, both Brs(x) and

�
Brs lie in the interval� �

rB
min
s Fmin

rs Vmin
rs � �

rB
max
s Fmax

rs Vmax
rs �

Therefore, the error Ers is bounded by the width of the interval

Ers 	 �
r 
 Bmax

s Fmax
rs Vmax

rs � Bmin
s Fmin

rs Vmin
rs � (2)

Three main factors affect the magnitude of the error:

1. the variation of the radiosity on the source node s

2. the variation of the form factor across the receiver node r

3. the variation in the visibility of the source from the receiver

Therefore, if we find the potential error in the transfer of light energy
from s to r too large, we can try to reduce the error by reducing
any of these factors. For instance, subdividing the receiving node
will reduce the variation of the form factor. Subdividing the source
will reduce the variation of the radiosity on the source. Subdividing
either of the two may reduce the variation in the visibility.

Unfortunately, errors due to visibility are more difficult to han-
dle than errors of the other two types. If the two nodes are com-
pletely visible to each other, the error usually decreases rapidly as
the nodes are subdivided. When the two nodes are completely oc-
cluded from each other no light energy transfer occurs, and the error
is zero. Partial visibility, on the other hand, often results in very fine
subdivisions, primarily because of loose bounds on the variation in
visibility between two finite areas. In HR, visibility is estimated by
casting a number of rays between the two nodes. Thus, if partial
visibility is detected, all we know is that the actual visibility is in
the interval � 0 � 1  .

Clearly, it would be to our advantage to use a subdivision strategy
that would result in as many totally visible or totally occluded pairs,
as quickly as possible. Since discontinuity lines on the receiver cor-
respond to abrupt changes in the visibility of the sources [16, 18],
subdividing the receiver along these lines should quickly resolve
partial occlusion.

We have modified the HR algorithm to perform discontinuity-
driven subdivision instead of regular subdivision. There are two
main changes in the data structures used by the new algorithm: first,
we store with each node a list of all the discontinuity segments on the
corresponding polygon; second, we use a 2D binary space partition-
ing (BSP) tree [3] instead of a quadtree to represent the hierarchical
subdivision of each initial polygon, since BSP trees allow for subdi-
vision of polygons along arbitrarily oriented lines. Pseudocode for
subdividing a node is given in Figure 2.

When a node is subdivided we choose one of its discontinuity
segments and split the node using the corresponding line equation.
The segment is chosen such that the split is as balanced as possible.



Boolean Subdivide (node)

if not IsLeaf (node) then
return TRUE

end if
if node � area � minNodeArea then

return FALSE

end if
if node.DSegments �= NIL then

DSegment s � ChooseBestSegment (node)
(left � right) � SplitNode (node � s)
(leftList � rightList) � SplitSegmentList (node � s)

else
(left � right) � SplitEqual (node)
(leftList � rightList) � (NIL � NIL)

end if
node � left � CreateNode (left � leftList)
node � right � CreateNode (right � rightList)
return TRUE

Figure 2: Pseudocode for the Subdivide routine

Priority is given to D0 discontinuities over higher order ones, since
the former typically bound areas totally occluded from the rest of the
environment. The subdivision is completed by splitting the list of
segments into two new lists, one for each child. If no segments are
stored with the node, we split the node by connecting the midpoint
of the longest edge to a vertex or another midpoint chosen so that
the resulting children have roughly equal areas.

5.1 Results

Figure 4 demonstrates the improved hierarchical algorithm using
a simple environment illuminated by two small triangular light
sources. A 3D view of the environment is shown in image a1. The
radiance function on the floor polygon is shown in image a2. Im-
age a3 shows the discontinuity segments on the floor. D0 discontinu-
ities are drawn in red; D1 and D2 discontinuities in yellow. In rows b
and c, we compare the subdivision produced by the discontinuity-
driven algorithm to the one produced by regular subdivision. The
level of subdivision shown increases from left to right: the leftmost
pair shows the subdivision at level 2, then level 4, 6, and 8.

The new algorithm is much quicker to correctly separate regions
corresponding to complete occlusion, partial visibility, and com-
plete visibility. Already at subdivision level 4 (image b2), most
of the nodes can be classified as either totally visible or totally oc-
cluded with respect to each of the light sources. For these areas there
are no more visibility errors. At subdivision level 6 (image b3) all
of the discontinuities have been used, and the partially visible nodes
are now confined exactly to the areas of penumbra.

In order to compare the rates of convergence of the two strategies
we computed a set of approximations to the direct illumination on
the floor using a successively larger number of elements. Figure 3
shows the RMS and the maximum absolute errors versus the num-
ber of elements for the two strategies. These errors were computed
with respect to an analytical solution at the vertices of a 400 by 400
grid on the floor. All the values were scaled to set the maximum
brightness on the floor to 1.

Our algorithm converges faster in both error metrics. Note that
the convergence of the regular subdivision is particularly poor in
the maximum absolute error metric. The reason is that there are
D0 segments on the floor that are not aligned with the subdivision
axes. Thus, there are always elements that are partially covered by
the pyramid while the remaining part is brightly illuminated by the
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Figure 3: A comparison of errors between the two subdivision
strategies using log-log plots

light sources. The algorithm assigns a single constant value to each
such element, and this results in a large error there. Our algorithm,
on the other hand, resolves D0 discontinuities and therefore does not
suffer from this problem.

In the RMS error metric regular subdivision does converge, be-
cause the elements that contain the errors become progressively
smaller, and this is accounted for by the metric; however, the con-
vergence is slower.

6 THE LOCAL PASS

The global pass results in a hierarchical solution that is essentially a
piecewise constant approximation to the radiance function on each
polygon in the environment. Often, this approximation is quite
coarse. Now our goal is to convert this solution into a form more
suited for producing visually accurate images. To that end, we need
to locally refine the radiance approximation on each polygon.

Our experience with discontinuity meshing [18] has shown that
reproducing the discontinuities in the radiance function, while main-
taining a smooth approximation elsewhere is key to achieving visual
accuracy, especially when multiple views of the same solution are
to be rendered. Therefore, we construct a discontinuity mesh con-
taining the precomputed primary discontinuities for each polygon.
Mesh nodes are assigned radiance values using the hierarchical so-
lution. This mesh is then used for the shaded display of the en-
vironment. Thus, the local pass essentially performs an additional
light gathering operation over the environment. However, instead
of gathering to the nodes in the hierarchy, we gather to the elements
of the discontinuity mesh.

The discontinuity mesh is constructed using constrained Delau-
nay triangulation (CDT) [5]. The Delaunay triangulation (DT) of a
point set maximizes the minimum angle over all possible triangula-



a

1 42 3

c

b

Figure 4: Discontinuity-driven vs. regular subdivision

tions of that set and has a number of other desirable properties [2].
These properties are important because they result in well-shaped
elements that yield more accurate approximations and reduce vi-
sual artifacts during display [1]. CDT takes as input a point set and
a set of edges connecting some of the points, and creates a triangu-
lation of the points that is constrained to include all the input edges.
CDT preserves the properties of DT over all the constrained triangu-
lations. We have implemented an incremental CDT algorithm that
is a simple extension of the incremental DT algorithm described by
Guibas and Stolfi [11]. An alternative easy-to-implement algorithm
is described in the excellent survey by Bern and Eppstein [2].

For each input polygon we provide the CDT routine with all of its
boundary edges and discontinuity segments. The corners of all the
leaf nodes in the corresponding hierarchy are given as well. Thus,
the resulting mesh is dense enough to adequately sample the solu-
tion computed by the global pass. As a result of the properties of
the CDT, most of the triangles are well shaped unless the hierarchy
is very coarse.

The radiance across each triangle is approximated using a stan-
dard quadratic element commonly used in finite element meth-
ods [27]. Six radiance values are computed for each element: three
at the vertices, and three at the edge midpoints. Except for D0 edges,
these values are shared between adjacent faces (our CDT algorithm
constructs a topological data structure suitable for such information
sharing [11].) The six values are then interpolated by a quadratic
bivariate polynomial. This scheme yields a C0 piecewise quadratic
interpolant to the radiance on each polygon. This interpolant was
found to provide approximations that look smoother and are less
prone to Mach bands than the traditional piecewise linear interpola-
tion [18]. Salesin et al. [21] describe a piecewise cubic interpolant
that can be used instead, if C1 interpolation is desired.

To obtain a radiance value at a point x we use the information
available to us from the hierarchical solution. Below we describe
four different methods that we have experimented with. Pseudocode
for the last three methods is given in Figure 5.

Method A. The simplest approach is to use the radiance value stored
in the hierarchy leaf that contains x. If x is on the boundary between
two or more leaves, their values are averaged to yield the radiance

at x. This method has no overhead other than locating the containing
leaves.

The accuracy of the resulting value depends on the accuracy of
the global pass solution. Consider the path from the root of the hier-
archy to the leaf containing the point x. Every node along this pass
has zero or more links to other nodes, representing areas on primary
or secondary sources that illuminate x. The error at x due to one
such link between a containing node r and an illuminating node s is
bounded by equation (2). The total error at x is the sum of the errors
over all the contributing links.

Method B. Each contributing link stores the unoccluded form factor
from the center of its node to the corresponding source, as well as
the visibility factor. To obtain a more accurate radiance value for
x we can recompute the unoccluded form factor to each source at
point x. Each form factor is multiplied by the visibility stored with
the link and by the radiosity of the source. This results in a smaller
bound on the error due to a link between r and s

Ers(x) 	 �
rFxs 
 Bmax

s Vmax
rs � Bmin

s Vmin
rs � (3)

Method C. The next logical step is to recompute both the form fac-
tor and the visibility of each source as seen from x. In order to obtain
an accurate visibility value the visible parts of the source are com-
puted analytically [18]. As a result, the error bound shrinks further:

Ers(x) 	 �
rFxsVxs 
 Bmax

s � Bmin
s � (4)

However, the computation becomes more expensive.

Method D. To reduce the cost, we can recompute the visibility for
links to primary light sources only. This is justified by the fact that
primary sources are typically responsible for the most noticeable
shadows. Moreover, these are precisely the sources for which dis-
continuities have been computed and inserted into the mesh. Thus,
we obtain the same accuracy as in method C for links to primary
sources, while the error due to other links remains the same as in
method B.



Spectrum Shade (node � x)

rad � 0
foreach l � node.links do

ff � FormFactor (x � l � source)
v � Visibility (x � l)
rad � rad + ff � v � l � source � radiosity

end for
if IsInterior (node) then

if Contains (node.left � x) then
rad � rad + Shade (node � left � x)

else if Contains (node.right � x) then
rad � rad + Shade (node � right � x)

else
rad � rad + 0 � 5 � � Shade (node � left � x)

+Shade (node � right � x) 
end if

end if
return rad

Real Visibility (x � link)
case ShadingMethod in���

v � link � visibility���
v � RecomputeVisibility (x � link � source)���
if IsPrimary (link � source) then

v � RecomputeVisibility (x � link � source)
else

v � link � visibility
end if

end case
return v

Figure 5: Pseudocode for the Shade routine

6.1 Results

We compared methods A, B, C, and D using a simple model of a
square exhibit room displaying a modern sculpture illuminated by
two small square light sources.

Three global pass solutions of the exhibit room are shown at the
top row of Figure 6, in order of increasing accuracy starting from
the left. For each solution, the elements (leaf nodes) of the hierar-
chical subdivision are shown as flat shaded, outlined polygons. The
bottom row of the same figure shows the corresponding local pass
meshes. Table 1 reports statistics for both passes.

The results of the global pass were fed to the local pass four times,
once for each of the methods A, B, C, and D, yielding a total of
twelve radiosity solutions shown in Figure 7. Columns 1, 2, and 3
were computed respectively from the low, medium, and high accu-
racy global pass solutions shown in Figure 6. Each row corresponds
to a different shading strategy starting with method A for the top
row.

As demonstrated in the top row, method A is prone to visual ar-
tifacts: the shading on walls is flat or not sufficiently smooth; some
shadows are entirely missing (image A1), while others have incor-
rect boundaries. These artifacts are the result of interpolating ra-
diance values obtained by sampling the piecewise constant global
pass solution.

Method B reduces some of these artifacts. The appearance of
unoccluded areas is greatly improved, since accurate form factor
are recomputed at every interpolated point in the mesh. However,
the penumbra regions of the shadows cast by the sculpture are still

Solution Accuracy
low medium high

input polygons 47 47 47
disc. segments 559 559 559
initial links 652 652 652
total links 720 1316 21805
total nodes 147 803 6041
total leaf nodes 97 425 3044

CDT elements 1538 2384 8177
shading calls 3799 5674 17984

initial linking 6 6 6
discontinuity comp. 1 1 1
hierarchical sol. 1 4 60

triangulation 0 � 53 0 � 81 2 � 78
method A 1 2 13
method B 6 10 80
method C 405 624 2633
method D 20 26 110

Table 1: Statistics for images in Figures 6 and 7. Timings are in
seconds for execution on an HP 9000/720 workstation.

incorrect and shadows are still missing from the coarse solution (im-
age B1.) The reason is that method B still uses node-to-node visi-
bility factors to approximate node-to-point visibility.

As shown in row C, method C correctly reconstructs all of the
shadows. In particular, note the appearance of the shadows in the
coarse solution (image C1.) This method results in the best visual
accuracy we were able to obtain, given a global solution.

Method D yields results that are almost indistinguishable from
those given by method C. However, as can be seen from the tim-
ings reported in Table 1, method D takes only a fraction of the time
required by method C. In fact, it is not much more expensive than
method B.

When using methods C or D, little difference can be seen be-
tween the medium and high accuracy solutions (columns 2 and 3).
Although the latter solution is objectively more accurate, from a vi-
sual standpoint, the former solution is almost as good. If fact, it is
apparent that even very low accuracy global pass solutions can yield
results of reasonable visual quality when followed by a local pass
using method D (image D1.)

When comparing the computation times reported in Table 1, it
can be seen that the local pass is in most cases costlier than the global
pass. It may be argued that the time used by the local pass could be
better spent in further refinement of the subdivision hierarchy in the
global pass. One might expect that if the hierarchy were sufficiently
refined, even a very simple shading strategy would have sufficed for
visually accurate results. Figure 7, however, demonstrates that this
is not the case. Image D2, computed from the medium accuracy
global pass followed by method D for the local pass, is visually more
accurate than images A3 and B3; yet, it took considerably less time
to compute (38 versus 83 and 150 seconds, respectively.)

Another set of comparisons was made to illustrate the importance
of including discontinuity segments in the mesh for the local pass.
Figure 8 shows a view of the floor of the exhibit room. The top
row shows the mesh in wireframe with D0 discontinuities in red and
D1 and D2 discontinuities in yellow. The bottom row shows the
shaded floor as reconstructed by the local pass. All images were
computed from the medium accuracy global pass solution shown in
image a2 of Figure 6 and all of them used method D in the local
pass. As can be seen from the top row of Figure 8, no discontinu-
ity segments were included in the left mesh, only D0 discontinuities
were included in the middle mesh, and all the discontinuity seg-
ments were included in the right mesh.

When comparing the corresponding images in the bottom row,
the higher quality of the right image stands out. Image b1 presents
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Figure 6: Exhibit Room. Global pass solutions (top row) and the corresponding local pass meshes (bottom row). The accuracy of the solutions
increases from left to right.

many of the visual artifacts typical of conventional radiosity meth-
ods: shadow and light leaks, fuzzy shadow boundaries, and incor-
rectly shaped shadows. Image b2 shows how including D0 discon-
tinuities greatly reduces shadow and light leaks, but still has prob-
lems reproducing shadow boundaries and penumbra areas. Finally,
image b3, correctly captures all shadow boundaries. We conclude,
therefore, that it is necessary to represent discontinuities explicitly
in the local pass mesh, even though some or all of them may have
been resolved by the subdivision in the global pass.

Discontinuities in the Mesh
none D0 D0 D1 D2

triangulation 0 � 39 0 � 39 0 � 81
shading 9 10 26

disc. segments 0 36 559
CDT elements 1170 1190 2384
shading calls 2739 3027 5674

Table 2: Statistics for the comparison of meshing strategies shown
in Figure 8. Timings are in seconds for execution on an HP 9000/720
workstation.

As the statistics reported in Table 2 show, building a mesh that
incorporates discontinuity segments takes longer than building one
without discontinuities. Furthermore, including the discontinuities
generally results in a larger number of elements and consequently
shading the mesh takes longer. We believe, however, that the in-
creased computation time is well justified.

7 A FINAL COMPARISON

In this section we demonstrate the performance of our combined
approach on an environment of moderate complexity (1 � 688 input
polygons.) Figure 9 shows a rendered view of the scene. There are
two primary light sources: a small distant polygonal source outside
the room simulates sunlight, and another polygonal source close to
the ceiling provides the artificial illumination.

The figure shows two images of the same environment. The
left image (HDMR) was generated using primary discontinuity seg-

ments in both passes with shading method D in the local pass. To
generate the right image (HR) we modified our algorithm to essen-
tially emulate regular HR: discontinuities were not used in either
pass, the vertices of the triangles were shaded using method A, and
linear interpolation was used for display.

As can be expected in a complex environment, the initial linking
stage results in a very large number of initial links, most of which
represent interactions of very small magnitude. For efficiency, we
use a simple culling strategy: we ignore all the initial links that do
not involve a primary light source and whose form factor falls below
a user specified threshold. We found that by using a small threshold
it is possible to eliminate most of the initial links, without any no-
ticeable change in the resulting images. As was mentioned in Sec-
tion 2, clustering of input surfaces in the initial linking stage should
provide a more comprehensive solution to this problem.

Table 3 reports various statistics for the two solutions from which
the images in Figure 9 were rendered. The two solutions have
roughly the same number of final triangles, yet the HDMR solu-
tion looks dramatically better than the HR solution; while the latter
exhibits many of typical problems of radiosity images, HDMR pro-
duces sharp shadow boundaries and correct penumbrae, eliminates
shadow and light leaks, and captures some small features that are en-
tirely missed by HR. Furthermore, the total computation time was
almost twice as long for the HR solution.

We attempted to perform a similar comparison with our progres-
sive DM algorithm [18]. However, we were not able to obtain a
converged solution for this environment: after four hours of com-
putation the DM algorithm was still in its fourth iteration.

7.1 Complexity of Discontinuity Meshing

A legitimate concern regarding discontinuity meshing is that, in the-
ory, l light source edges and m polygon edges can result in O(lm)
distinct EV visual events. In the worst case, each event intersects
O(m) polygons, resulting in a total number of O(lm2) discontinu-
ity segments. In such a case each polygon has O(lm) discontinuity
segments, which can result in as many as O(l2m2) elements in the
discontinuity mesh for that polygon.

We have found that this worst case analysis is too pessimistic
in practice. Consider, for example, the environment shown in
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Figure 7: Exhibit Room. A comparison of shading strategies. Columns 1, 2, and 3 were computed respectively from the low, medium, and
high accuracy global pass solutions shown in Figure 6. Each row corresponds to a different shading strategy; starting from the top: method
A, method B, method C, and method D.

Figure 9. In this environment l is 8, and m is 6,744. The worst case
upper bound on the number of discontinuity segments on a single
polygon is 215,808. In practice, there were 18,664 discontinuity
segments in the entire environment, an average of roughly 11 seg-
ments per polygon. The highest number of segments on a single
polygon (the floor) is 2,175, resulting in only 7,627 triangles in the
floor’s discontinuity mesh.

8 CONCLUSIONS

By combining hierarchical radiosity with discontinuity meshing we
have created a new radiosity method that is superior to both of its an-
cestors: it is more accurate than the HR algorithm, both numerically
and visually, and it is faster and more flexible than DM algorithms.
The new algorithm is capable of producing high quality images even

from quick simulations.
Hierarchical radiosity has been recently extended to deal with

very complex environments by introducing the notion of importance
into the solution process [22]. This improvement is readily appli-
cable to our algorithm as well: the global pass would simultane-
ously solve for radiosity and for importance as described by Smits
et al. [22]; the local pass would only reconstruct the radiance on
surfaces which are direct receivers (or emitters) of importance.

There are several aspects of our algorithm that can be substan-
tially improved:

Visibility computations. Our implementation uses shaft cull-
ing [13] to reliably determine complete visibility between polygons,
but point sampling is used to determine whether two polygons are
entirely occluded from each other. Our method could be improved
by using the accurate and reliable visibility algorithms described by



21 3

b

a

Figure 8: Exhibit Room Floor. A comparison of meshing strategies. Mesh (top row) and computed radiance (bottom row) on the floor using
simple CDT (left), CDT with D0 discontinuity segments (middle), and CDT with D0, D1, and D2 discontinuity segments (right).

Figure 9: A comparison of Hierarchical Discontinuity Meshing Radiosity (left) vs. Hierarchical Radiosity (right)



Radiosity Algorithm
HDMR HR

initial linking 2 : 16 : 27 2 : 16 : 27
discontinuity computations 0 : 09 : 06 0 : 00 : 00
hierarchical solution 0 : 16 : 42 3 : 58 : 01
triangulation 0 : 00 : 21 0 : 00 : 16
shading computations 0 : 33 : 49 0 : 00 : 51
total time (hr:min:sec) 3 : 16 : 56 6 : 15 : 35

input polygons 1 � 688 1 � 688
discontinuity segments 18 � 664 0
initial links 165 � 814 165 � 814
links after culling 27 � 002 27 � 002
total links 39 � 056 161 � 668
total nodes 5 � 778 35 � 454
total leaf nodes 3 � 733 18 � 571
avg. depth of hierarchy 1 � 31 2 � 04

CDT elements 41 � 090 41 � 284
shading calls 109 � 885 101 � 208
recomputed form factors 3 � 609 � 941 0
recomputed visibility terms 128 � 705 0

Table 3: Statistics for the comparison of hierarchical discontinuity
meshing radiosity (HDMR) vs. hierarchical radiosity (HR) shown
in Figure 9. All timings are for execution on an HP 9000/720 work-
station.

Teller and Hanrahan [26].
We need to be able to compute tight bounds on the visibility be-

tween two partially occluded polygons. This would improve the ef-
ficiency of the global pass by eliminating unnecessary subdivision
in penumbral areas.

Choice of sources. Our algorithm is particularly effective for envi-
ronments with a few primary light sources that are responsible for
the most noticeable shadows. In general, however, primary light
sources do not dominate the illumination on all the surfaces in an
environment. Our algorithm should be extended to compute a set
of the most dominant sources, primary or secondary, with respect
to each receiving surface. This set should be used both for com-
puting the discontinuities on that surface and for determining when
visibility should be recomputed in the local pass.

Choice of discontinuities. Not all the discontinuities are equally
significant. In the global pass, for example, we should choose dis-
continuities that would resolve partial visibility most effectively,
rather than ones that split the node most evenly. In the local pass
we need to identify the discontinuities that are visually significant
and insert only these discontinuities into the mesh.
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