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Figure 1: Several frames from a video sequence captured by an iPhone. Top row: the in-camera auto white balance causes significant color
fluctuations. Bottom row: tonal stabilization eliminates the rapid fluctuations in exposure and color, and the shot may be white-balanced and
tonemapped in a consistent manner. Note: the video clips for all of the examples in this paper are available on the project web page.

Abstract
This paper presents a method for reducing undesirable tonal fluc-
tuations in video: minute changes in tonal characteristics, such as
exposure, color temperature, brightness and contrast in a sequence
of frames, which are easily noticeable when the sequence is viewed.
These fluctuations are typically caused by the camera’s automatic
adjustment of its tonal settings while shooting.

Our approach operates on a continuous video shot by first desig-
nating one or more frames as anchors. We then tonally align a
sequence of frames with each anchor: for each frame, we com-
pute an adjustment map that indicates how each of its pixels should
be modified in order to appear as if it was captured with the tonal
settings of the anchor. The adjustment map is efficiently updated
between successive frames by taking advantage of temporal video
coherence and the global nature of the tonal fluctuations. Once a
sequence has been aligned, it is possible to generate smooth tonal
transitions between anchors, and also further control its tonal char-
acteristics in a consistent and principled manner, which is difficult
to do without incurring strong artifacts when operating on unstable
sequences. We demonstrate the utility of our method using a num-
ber of clips captured with a variety of video cameras, and believe
that it is well-suited for integration into today’s non-linear video
editing tools.
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1 Introduction

With the proliferation of inexpensive video capturing devices, and
the increasing popularity of video sharing websites over the last
few years, we have witnessed a dramatic increase in the amount of
captured video content. For example, every minute, about 24 hours
of video are uploaded to YouTube1. Most of this video footage is
home-made and captured by amateur videographers using low-end
video cameras.

While professional videographers might employ an elaborate setup
to control the motion of the camera and the lighting of the scene,
home-made video footage often suffers from camera shake and
from significant fluctuations in exposure and color balance. These
tonal fluctuations (seen in the top row of Figure 1) are induced by
the camera’s automatic exposure and white balance control: minute
adjustments to these tonal settings are continuously made in re-
sponse to changes in the illumination and the composition of the
frame. Turning auto-exposure off is not a practical option, since the
dynamic range of the scene is typically much greater than what the
camera is able to capture with a fixed exposure setting, making it
difficult to avoid over- and under-exposure. Turning off automatic
white balance is more feasible, but not all cameras offer this option.
In any case, we would like to be able to correct existing videos that
were captured with the automatic settings in effect.

While video motion stabilization (elimination of camera shake ef-
fects) has been the subject of much research (two recent examples
are [Matsushita et al. 2006; Liu et al. 2009]), elimination of tonal
fluctuation, or tonal stabilization, got surprisingly little attention.
In this paper we address this unexplored problem and propose an
algorithm for tonal video stabilization.

Different cameras may differ in their response functions, and might
employ different auto-exposure and white balance algorithms. Fur-
thermore, a video may have been edited by the user after it has been
captured. Therefore, we avoid making strong assumptions regard-
ing the specifics of the camera’s tonal response. Another important
feature of our approach is that it does not require computing precise
correspondences or accurately tracking features across frames.

1http://www.youtube.com/t/press
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Our tonal stabilization method operates on a continuous video shot.
One or more frames are designated as anchors, typically located in
parts of the shot where the tonal settings are stable. Sequences of
successive frames are then tonally aligned with adjacent anchors:
for each frame, we compute an adjustment map that indicates how
each of its pixels should be modified in order to appear as if it was
captured with the tonal settings of the anchor. This map is effi-
ciently propagated from one frame to the next by taking advantage
of temporal coherence. We assume that lighting conditions in the
scene are not changing abruptly, and that the tonal fluctuations are
of a global nature, rather than spatially varying across the frame.

In order to robustly assess the tonal changes between successive
frames we observe that, due to temporal coherence, most of the
pixel grid points of any given frame sample the same scene sur-
faces in the next one. Thus, we have an easily computable set of
rough correspondences, making it possible to seed the values of the
adjustment map in a large number of locations. Global consistency
considerations are then used to propagate these values to the entire
frame, obtaining a new complete adjustment map. Thus, the map is
propagated between frames, while being gradually updated.

Once a video sequence has been stabilized, it no longer suffers from
undesirable fluctuations in exposure and in color. Furthermore, it
becomes amenable to a variety of consistent tonal manipulations.
For example, the entire sequence can be manually white-balanced
by designating a patch in one of the frames as neutral grey. Also,
a set of tone curves may be applied to modify the brightness and
the contrast of the sequence. The bottom row in Figure 1 shows
several frames after applying such corrections on a stabilized se-
quence. Note that performing such corrections on tonally unstable
sequences typically results in artifacts, since the absolute pixel val-
ues of the same object in the scene may vary drastically.

2 Related Work

Although we are not aware of previous work aimed specifically at
tonal video stabilization, a variety of related problems have been
well studied in computational photography, image and video pro-
cessing, and computer graphics.

Camera response recovery

The digital video capture pipeline may be modeled as follows
[Poynton 2003]: the analog linear RGB values arriving at the cam-
era’s sensor are converted to digital values, undergo luma/chroma
separation, processed to adjust brightness and color, and finally en-
coded to the target digital video format. Both the analog-to-digital
conversion and the subsequent processing may involve non-linear
operations. We refer to the combined effect of this pipeline as
the camera’s response function, which may vary between different
cameras operating at different settings, and is typically proprietary.

Had the camera response at each frame been known, it would be
possible to stabilize the sequence by inverting the response func-
tion. Several methods have been proposed for modeling and re-
covering the camera response, including parametric [Mann and Pi-
card 1995; Mitsunaga and Nayar 1999; Tsin et al. 2001], semi-
parametric [Candocia and Mandarino 2005] and non-parametric
[Debevec and Malik 1997] approaches. However, these methods
typically operate on still, geometrically registered images, which
vary only in their exposure. To apply them to video would require a
sufficiently large set of exact correspondences between each pair of
frames, which might be difficult to compute. Even if the required
correspondences are available, the exposure change between suc-
cessive frames is typically too small to produce a numerically stable
result. Furthermore, it would be necessary to extend these methods
to handle more general changes of the camera parameters.

Rather than attempting to recover a full camera response model, our
approach uses easily computable rough correspondences between
successive frames in order to update a non-parametric model that
aligns each frame with the tonal appearance of the anchor.

Color transfer

At first glance it might seem that tonal alignment may be achieved
simply by transferring color from the anchor to the remaining
frames. Indeed, a variety of color transfer methods have been pro-
posed over the years [An and Pellacini 2010]. Following Reinhard
et al. [2001], several researchers tried to match various global color
statistics of two images, such as mean and variance in some color
space. Such methods cannot be used for tonal stabilization, since
the statistics of a frame tend to vary significantly due to camera
and object motion. These changes can occur quite quickly, and
therefore any attempts to match the global statistics would result in
introducing fluctuations of their own. Local methods, such as [Tai
et al. 2005] and [Kagarlitsky et al. 2009] try to find a local match
between regions in the image and fit a corresponding offset. While
such transfer models are powerful, reliably matching regions in the
presence of camera and scene motion remains a challenging task.

Another significant problem in using both global and local meth-
ods in the context of frame-to-frame color transfer is that of error
accumulation. We further discuss this problem in Section 3.2.

Some recent works [Levin et al. 2004; Li et al. 2008] showed im-
pressive recoloring results using a scribble interface. An and Pel-
lacini [2010] employ this interface in a system specifically designed
for user-controlled color transfer between images, using a powerful
nonlinear parametric transfer model. We show that it is possible
to achieve tonal stabilization using a simpler transfer model, and
without requiring user interaction.

Color constancy and white balance

Many algorithms for white balance have been proposed over the
years; see [Agarwal et al. 2006; Hordley 2006] for a good overview.
Most white balance methods relate between pixel values and certain
scene attributes, such as the average reflectance, or the illuminant
color. Thus, applying such a method on a frame-by-frame basis pro-
duces tonal fluctuations of its own, since statistical estimates of the
relevant scene attributes typically deviate between frames (causing
the tonal fluctuations in the first place). It is also worth mentioning
that white-balance corrections are orthogonal to some global color
manipulations, such as saturation, and thus cannot undo them. In
Section 4 we show that applying a grey-world/grey-edge type white
balance algorithms to a tonally-stabilized sequence yields better re-
sults than applying them on the original unstable sequence.

Commercial tools

We are not aware of commercial tools specifically geared at correct-
ing tonal fluctuations in video. Non-linear video editing and post-
production tools, such as Adobe Premiere, After Effects and Final
Cut Pro, allow to specify tonal corrections at various keyframes and
smoothly interpolate them through the entire shot. Thus, in order
to stabilize a sequence multiple keyframes must be placed, such
that the interpolated corrections would match the underlying fluc-
tuations. Since a video might exhibit many fluctuations over a short
period of time, this is potentially a very tedious task.

In the context of time-lapse photography or stop motion animation,
there are number of deflicker tools, such as GBDeflicker (by Gran-
ite Bay Software). While these tools are successful in removing
high-frequency fluctuation of exposure, they typically operate on a
fixed viewpoint of basically the same scene, unlike the more general
sequences we are dealing with in this paper.



(a) Anchor frame (b) Subsequent frame (c) Correcting (b) with a diagonal model

(d) Correcting (b) with an affine model (e) Affine model, after 3 frames (f) Affine model, after 6 frames

Figure 2: Parametric estimation of tonal fluctuations. In order to get (e) we composite the affine transformations obtained for 3 successive
frame pairs (and 6 transformations for (f)).

3 Tonal Alignment

3.1 Overview

The core of our method is the tonal alignment algorithm which,
given an anchor frame, adjusts a sequence of adjacent frames to
appear as if they had been shot under the same tonal settings. Typ-
ically, the frames between a pair of successive anchors are aligned
to each one of them, and the final result is obtained by blending
the two resulting sequences according to the distance of each frame
from each of the anchors. For two anchors that were captured with
similar tonal settings, this results in a more error-tolerant alignment
of the sequence. In case of different settings at the anchors, such
blending results in a smooth interpolation between these settings.

For each frame fi, we compute an adjustment map Ai. This map
specifies for each pixel how its color channels should be adjusted
to obtain the desired aligned value. Once we have the adjustment
maps, the aligned sequence is obtained simply by applying each
map to its frame. Since we know the map at the anchor (the identity
mapping), our goal is a method for efficient and robust propagation
of the maps along the frame sequence. More formally, we seek a
method for computing Ai+1, given fi, Ai, and fi+1.

An overview of our method is depicted in the diagram in Figure 3.
We make the key observation that due to high temporal coherence
of video, most of the pixel grid points of any given frame fi sample
the same scene surfaces in frame fi+1. Thus, we compute a set of
rough correspondences, which we refer to as the robust set Ri/i+1,
and use them to seed the adjustment values in a large number of
locations. Ai+1 is then completed via scattered data interpolation in
color space. Before going further into the details of our approach,
we would like to discuss some assumptions and considerations that
led us to address the problem the way we did.

3.2 Tonal Transformation Model

We assume that the camera’s tonal transformations are global and
reversible. Note that not every global transformation can be mod-
eled by independent mappings of the color channels. For exam-
ple, when the saturation of an image is adjusted, or a general (non-
diagonal) white balance correction matrix is applied, the value of
each channel in the resulting image depends on all three color chan-
nels of the original image, an effect that can only be approximated

with three independent curves. Thus, similarly to previous (still
image) color matching methods, our focus at the initial stages of
this work was on finding a sufficiently expressive tonal adjustment
model, facing a common model selection dilemma: generalization
versus overfitting [Bishop 2007].

The inadequacy of a simple, channel independent, model for the
task of tonal alignment is demonstrated in Figure 2. A diagonal
matrix (three scaling factors, one for each channel) was fit to model
the change between images (a) and (b) using a set of user indicated
correspondences. This model fails to align image (b) to (a) in a
satisfactory manner, as may be seen in image (c), which exhibits
some color differences compared to (a) (on the screen and the sofa).

A richer model, which interleaves the channels and has more pa-
rameters, such as the one proposed by An and Pellacini [2010], can
better account for the variations in the data. This is demonstrated
in the second row of Figure 2, where we used an affine transfor-
mation with 12 degrees of freedom. Image (d) shows a successful
alignment of image (b) to image (a). The difficulty with using high-
dimensional models for our purposes, however, is that they tend to
overfit the data, and accumulate errors at each stage. Thus, accumu-
lating (compositing) the transformations from one frame to the next
results in a rapid degradation in the quality of the result, making it
impossible to apply to sequences containing hundreds of frames, as
demonstrated in Figure 2(e) and (f).

During the initial stages of this work, we spent considerable time
trying to overcome these error accumulation issues. While Kalman
filtering and exponential decay weighting [Simon 2006] alleviated
error accumulation to some degree, we were not able to produce a
stable estimation on a scale of hundreds of frames, needed in the
context of tonal alignment.

Eventually, we gravitated towards representing the changes by an
adjustment map, defined as a set of three per-pixel additive correc-
tions, or offsets. For each frame, we first compute the luminance
and then use it to normalize the RGB channels. Thus, we separate
between luminance and chroma, and represent the change at each
pixel as one offset for the log-luminance channel, and two offsets
for the chroma. Note that because we operate on the log-luminance
channel, the corresponding offset actually represents an exposure
correction. This non-parametric model is expressive by construc-
tion, but we shall see in Section 5 that under adverse conditions it
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Figure 3: Flow of the adjustment map update algorithm.

gracefully degrades to the equivalent of a much simpler and more
limited model, which does not accumulate errors as fast.

3.3 Adjustment Map Update

In this section we describe in more detail our algorithm for comput-
ing the adjustment map Ai+1 given the frames fi and fi+1, and the
previous adjustment map Ai.

Given a pair of corresponding pixels between two frames, any dif-
ference between their colors may be attributed to several factors.
A change in the tonal parameters of the camera is but one of these
factors; the other major factors include changes in the diffuse and
specular shading components. Ideally, our goal is to construct ad-
justment maps that reflect only those color changes that arise from
varying the tonal settings of the camera. Previous work has shown
that edge preserving smoothing effectively attenuates specularities,

as well as variations in diffuse shading and texture (e.g., [Oh et al.
2001; Khan et al. 2006]). Thus, our first step is to apply a bilateral
filter [Tomasi and Manduchi 1998] to each frame (Figure 3A), using
the a standard set of parameters: spatial sigma is 10% of the smaller
image dimension and range sigma is 10% of the values range.

Next, we efficiently compute a set of correspondences between the
successive frames. We rely on the observation that, due to both spa-
tial and temporal coherence, a large set of pixels in two successive
frames are likely sample the same surfaces in the scene. We refer
to these pixels as the robust set (shown in white in Figure 3B).

More precisely, let Li and Li+1 denote the luminance channel of the
smoothed frames fi and fi+1, with µ(L) indicating the mean of the
luminance channel. We define the robust set Ri/i+1 as the set of all
pixels whose values in Li and Li+1 differ by only a small amount:

Ri/i+1 = {x s.t. |(Li(x)−µ(Li))− (Li+1(x)−µ(Li+1)|< 0.05}
(1)

The underlying assumption of eq. (1) is that tonal fluctuations in the
luminance channel can be approximated by a single shift parameter.
All the remaining pixels (whose luminance changed by more than
0.05) are considered likely to have been affected by factors other
than a change in the camera’s tonal settings, such as a change in the
surface visible through the pixel.

Having computed the robust set Ri/i+1, we use it to initialize the
adjustment map at these pixels, while temporarily assigning a value
of 0 to the remaining pixels:

Âi+1(x) =
{

Ai(x)+( fi(x)− fi+1(x)), for each x ∈ Ri/i+1
0 otherwise

(2)
In other words, we add the observed color difference at each pixel
in the robust set to its previous value in Ai (Figure 3C).

Next, to obtain Ai+1 , we must replace the missing values (zeros) in
Âi+1. Since we assume that tonal fluctuations are global transfor-
mations, we want pixels with similar colors in fi+1 to be assigned
similar adjustments values in Ai+1, regardless of their spatial lo-
cation. To achieve this, we employ a fast scattered data interpola-
tion scheme in color space. This scheme is derived from Shepard’s
method [Shepard 1968] as described below.

The value predicted at pixel x by Shepard’s interpolation may be
expressed as the following weighted sum of values in Âi+1:

Ai+1(x) =
∑

N
r=0 w(x, xr) Âi+1(xr)

∑
N
r=0 w(x, xr) χÂi+1

(xr)
(3)

where χÂ is the characteristic function corresponding to Â (χÂ is
1 where Â is non-zero, 0 otherwise) and w is a Gaussian distance
function (affinity kernel) in color space:

w(x, y) = exp(−‖c(x)− c(y)‖2/2σ
2
c ). (4)

Here, c(x) and c(y) are the colors of pixels x and y in the CIE Lab
color space.

Denoting by W the all-pairs affinity matrix, Wi j = w(xi, x j), eq. (3)
can be rewritten as a ratio of matrix-vector products:

Ai+1 =
W Âi+1
W χÂ

, (5)

where Ai+1, Âi+1 and χÂ are represented as column vectors.

Because of the size of W (N×N, where N is the number of pixels),
direct evaluation of eq. (5) is very expensive, but we can use the



Figure 4: Effect of anchor placement on the stabilization result. Top row: frames from the original sequence. Middle row: alignment is done
using the frame marked B as an anchor. Bottom row: choosing two anchors with a different tonal settings (A and C), produces a smooth
transition between the settings.

Nyström method to compute an approximation quickly. We note
that the affinity matrix W is symmetric, and thus diagonalizable by
orthogonal matrices:

W =UDUT (6)

It has also been shown that all-pairs affinity matrices, such as W ,
have low rank [An and Pellacini 2008; Farbman et al. 2010]. In
other words, W can be well approximated using a small number of
eigenvectors.

Let D̃ be a diagonal matrix containing all the eigenvalues of D
above a certain threshold. We can approximate W by:

W ≈UD̃UT (7)

We use the Nyström method for fast calculation of the eigenvectors
of W [Fowlkes et al. 2004]. Evaluation of eq. (5) now boils down
to projecting Âi+1 and χÂ onto a small set of eigenvectors (5–10),
which correspond to the eigenvalues in D̃. Thus, the resulting cost
of the interpolation is linear in the number of pixels in the image.

Our method is close in spirit to the scattered data interpolation
scheme of [An and Pellacini 2008], but without the computational
overhead of computing the Woodbury formula, which they use in
order to invert the associated non-homogenous Laplacian system. It
also echoes with [Paris and Durand 2006], where the bilateral filter
is approximated using the low frequencies of an operator. Despite
these similarities, it is important to remind that our affinity kernel
operates on color values only and does not have any component of
spatial attenuation.

Adjustment map upsampling

In practice, in order to decrease the running time of the algo-
rithm, we work with low resolution adjustment maps. In order
to avoid blurring artifacts which arise when applying an upsam-
pled version of this map to the full resolution frame, we use our
chroma/luminance separation in the following manner: we apply a
low resolution adjustment map to a correspondingly downsampled
version of the frame’s luminance channel. Next, we fit a piecewise

linear curve to model the resulting changes in the frame’s lumi-
nance. Finally, we use the resulting curve to adjust the luminance
of the original resolution frame.

As for the chromatic channels of the frame, they are adjusted using
an upsampled version of the adjustment map. This produces ac-
ceptable results, since the human visual system is more sensitive to
high frequencies in the monochromatic channel.

Running times

The main computational bottleneck of our method is the scattered
data interpolation scheme based on the Nyström method. The high-
est adjustment map resolution that we used to produce the results
for this paper is 320x180. At this adjustment map resolution, and
using 100 samples for the Nyström approximation, the computa-
tion time to align each (full-resolution, 1280x720) frame is approx-
imately 1.5 seconds on a laptop with 2.4 GHz (540M) Intel Core
i5 processor. The scattered data interpolation takes about 0.3 sec-
onds. While this component is fairly optimized in our Matlab im-
plementation, we believe that significant speed-ups can be gained
by a more efficient implementation of the rest of the pipeline.

4 Results

We start by demonstrating our stabilization results and the effect
that the anchor placement has on them. In Figure 4, the top row
shows four sample frames from a sequence with an abrupt color
transition2. If the frame marked B is selected as an anchor, the en-
tire sequence is aligned to match the tonal characteristics of that
frame, as shown in the second row of the figure. Alternatively,
we may designate two anchors A and C, one on each side of the
color fluctuation. Aligning the sequence to each of the two an-
chors, followed by blending the results produces a stable sequence
that avoids the sudden change in color (Figure 4, bottom row).

2All test sequences were captured without fiddling with the camera set-
tings. In fact, some of the videos were shot with a consumer device which
does not give the user control over such settings.



Figure 5: Noisy sequence stabilized with an increased affinity sigma σc. Top row: original sequence. Bottom row: stabilized sequence

Figure 6: Exposure stabilization. Tom row: original sequence, showing mainly fluctuations in exposure. Bottom row: exposure was stabilized
without changing the chroma. Notice the slight changes in chroma which are still visible after the alignment.

Figure 7: Correcting chroma only. In order to avoid excessive clipping, we attenuate only the color shifts of the sequence.
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Figure  8:  Numerical  evaluation  of  tonal  stabilization  and  
consequent  white  balance  correction.  
The  plot  on  the  left  shows  an  angular  error  (in  degrees)  
between  the  grey  card  pixels  in  each  frame  and  the  anchor.
The  plot  on  the  right  shows  an  angular  error  (in  degrees)  
from  the  ground  truth.

While exact placement of the anchors plays an important role in
the final appearance of the resulting video, generally in order to
simply attenuate strong tonal shifts, it is enough to delimit parts of
the sequence with strong fluctuations by pairs of anchors. This may
be done interactively by the user, or automatically by scanning the
sequence for areas where the tonal parameters appear to be stable.

Beyond the attenuation of undesirable tonal fluctuations, our tonal
stabilization method offers another significant advantage: once the
video is stabilized one can apply a variety of image processing oper-
ations in a consistent manner, since color values in each frame now
much more closely correspond to values in another frame. In other
words, stabilization makes absolute color values to have consistent
meaning throughout the sequence. An example of consistently cor-
recting the video using a single tone curve is demonstrated in the
second row of Figure 1.

Since our method was particularly motivated by abundance of low-
quality video footage from low-end video cameras and mobile de-
vices, it is interesting to see how well our method performs on se-
quences captured with such devices under adverse conditions, such
as scenes with low-level of lighting and high amounts of noise. Fig-
ure 5 shows an example of such a noisy sequence. Notice that even
in the frames exhibiting very strong amount of noise (which is more
evident when viewing the supplementary video), our method suc-
ceeds to significantly attenuate the color fluctuations.

In order to achieve satisfactory results on noisy sequences such as
the one in Figure 5, or videos of very cluttered scenes, such as the
one in Figure 7, we increase the σc parameter of eq. (4), because
this makes the color affinity function more smooth (and hence more
tolerant to noise). Section 5 includes a further discussion of the
meaning of this parameter and the trade-offs involved in adjusting
it in this manner.

Although so far we presented our algorithm in the context of cor-
recting both chroma and luminance fluctuations, our method allows
the user to choose to correct only one of them. For example Figure
6 shows an example where only the exposure was stabilized. Anal-
ogously, it is also possible to attenuate only the chromatic fluctua-
tions, while preserving the changes in exposure. This is useful in re-
gions of strong changes in the overall luminance of the scene. Cor-

recting the chroma without attempting to fix the luminance fluctu-
ations allows to avoid the problems caused by the limited dynamic
range of the camera. Figure 7 shows an example of chroma only
correction, where the magenta color cast in the middle frames of
the top row has been removed by the chromatic stabilization.

White balance estimation

Once the sequence is tonally stabilized, we can apply a white bal-
ance correction in a more principal manner to the entire sequence.
We experimented with adapting a Grey-Edge family of algorithms
to video. These simple methods, which van de Weijer et al. [2007]
found to perform well, relative to other alternatives, assume that
some property of the scene, such as average reflectance (Grey-
World) or average derivative (Grey-Edge) is achromatic.

In order to assess the benefits of tonal stabilization in this context,
we have conducted the following experiment. We placed an 18%
reflectance grey card in a relatively simple scene and shot the scene
with a low-end camera that exhibits strong tonal fluctuations. Next,
we aligned the sequence to the first frame by running our stabiliza-
tion algorithm. In order to quantify the success of the stabilization,
for each frame we measured the angular error in CIE Lab color
space between the mean color of the pixels inside the grey card, to
their mean in the first (anchor) frame. The angular error between
two colors is defined as the angle between the corresponding color
vectors [Hordley 2006].

Figure 8(left) shows that the stabilization process successfully at-
tenuates strong fluctuations in color. The mean angular error before
the stabilization is 6.5◦, and reduced to 1.04◦ after the stabilization.

Next, we applied both the Grey-World and Grey-Edge algorithms
(with σ = 1 and p-th Minkowsky norm= 2, see van de Weijer
et al. [2007] for a discussion of these parameters) to both the orig-
inal and the stabilized sequences. When operating on the stabi-
lized sequence we used the average statistics over all of the frames.
When operating on the original sequence, averaging over all frames
produced very poor results, and better results were obtained by ap-
plying the algorithms to each frame independently, so these are the
results we display in Figure 8(right). In this plot we show the angu-
lar error with respect to the ground truth color of the grey card.



As can be seen in Figure 8(right), for both Grey-World and Grey-
Edge methods, stabilizing the sequence prior to applying the white
balancing algorithm greatly improves the results. In the case of
the Grey-World algorithm, the mean angular error is reduced from
10.25◦ to 2.82◦. In the case of the Grey-Edge method, the mean
error is reduced from 6.36◦ to 3.42◦.

5 Discussion
In Section 3.2 we began discussing the trade-offs between different
models for fitting the data. While simple models, might not be gen-
eral enough to capture the space of possible global tonal changes,
richer models can easily over-fit the data and accumulate error from
frame to frame. The adjustment maps that we chose to use are by
definition general enough to represent any tonal change. The ques-
tion is to what extent they are prone to accumulation of error.

Under adverse conditions, our temporal coherence assumption may
be violated. For example, due to strong noise or fast motion, the
robust set Ri/i+1 might contain only a small fraction of the frame’s
pixels. Thus, a pixel y outside the robust set might not be suffi-
ciently similar in color to any of the pixels in the set, and when
using scattered data interpolation (eq. (3)) the value of Ai+1(y) will
effectively be estimated by averaging rather distant colors.

Intuitively, this means that the adjustment map undergoes diffusion,
as it is updated from one frame to the next, rather than being crisply
interpolated. Consequently, performing a number of update cycles
under adverse conditions will cause the accumulated transforma-
tions to lose localization in color space.

Besides the conditions in the video, the exact rate of the diffusion is
determined by the affinity Gaussian parameter σc, which is the only
tunable parameter in our method. For noisy, cluttered sequences,
and fast moving sequences, where estimates of the robust set are
likely to contain errors, we increase this parameter, creating wider
(more diffused) kernels in each row of W . At the limit, for an ex-
tremely high σc, W degenerates to a constant matrix, and the eval-
uation of eq. (5) boils down to computing an average per-channel
offset. Thus, our color transformation degenerates into a simple
3-parameter model.

In summary, our adjustment scheme is akin to a self-tuning model.
It captures the fluctuations of the data at each stage and retains them
as far as conditions allow. The diffusion slowly causes accumulated
transformations to lose localization in color space and thus become
more conservative, avoiding rapid accumulation of error.

While in principle it may be possible to find a concise parametric
model to fit the camera tonal variations data, or to devise a rich para-
metric model that will gracefully degrade into a simpler one once
errors begin to accumulate, we leave this avenue of exploration to
future work.

5.1 Limitations

Loss of temporal coherence: As discussed above, when temporal
coherency is lost or severely degraded, the algorithm is not expected
to behave correctly, since there is not reliable way to update the
adjustment for the next frame.

Changes in lighting vs. exposure settings: Our framework cannot
discriminate between moderate changes in the illumination in the
scene, and the gradual changes that occur due to changes in the
camera’s settings. Thus, our method will attenuate these lighting
changes, along with the undesired tonal fluctuation. In practice,
this nevertheless tends to make video sequences look better. We
leave a more principled identification of the source of changes in
brightness to future work.

6 Summary
We have presented a method for attenuating undesirable tonal fluc-
tuations in video without resorting to precise tracking or optical
flow computations. To our knowledge, this is the first attempt to
address this problem, which has important practical applications.

A natural direction for future exploration is to modify our method to
handle spatially variant transformations (local edits). Such ability
would enable us not only correct local tonal adjustments (which we
believe are quite rare in video), but more importantly to propagate
local edits in a consistent manner from an anchor to the subsequent
frames. While we experimented with propagation of local edits by
augmenting the affinity kernel with spatial coordinates, we leave a
full exploration of this direction to future work.
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