
Target-Driven Smoke Animation

Raanan Fattal∗ Dani Lischinski†

School of Computer Science and Engineering
The Hebrew University of Jerusalem

Abstract

In this paper we present a new method for efficiently controlling an-
imated smoke. Given a sequence of target smoke states, our method
generates a smoke simulation in which the smoke is driven towards
each of these targets in turn, while exhibiting natural-looking inter-
esting smoke-like behavior. This control is made possible by two
new terms that we add to the standard flow equations: (i) a driving
force term that causes the fluid to carry the smoke towards a partic-
ular target, and (ii) a smoke gathering term that prevents the smoke
from diffusing too much. These terms are explicitly defined by the
instantaneous state of the system at each simulation timestep. Thus,
no expensive optimization is required, allowing complex smoke an-
imations to be generated with very little additional cost compared
to ordinary flow simulations.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;

Keywords: animation control, fluid dynamics, smoke simulation

1 Introduction

Animated natural phenomena, such as smoke, fire, and liquids,
have become an indispensable component in contemporary com-
puter generated animation, special effects, training simulators, and
computer games. Currently, realistic and believable animations of
these elements are most effectively achieved through physically-
based numerical simulations of fluid dynamics. Efficient and stable
methods for performing such simulations have been recently intro-
duced to the computer graphics community [Stam 1999; Fedkiw
et al. 2001; Foster and Fedkiw 2001; Enright et al. 2002; Nguyen
et al. 2002]. However, providing animators with means for control-
ling such animations in an intuitive yet precise manner remains a
challenging open problem. This paper addresses this problem by
introducing a new tool for controlling animations of smoke.

To illustrate just how challenging smoke animation control can
be, consider the shot from the recent feature filmThe Fellowship
of the Ring, where the smoke that Gandalf blows forms a beautiful
galleon that sails right through Bilbo’s expanding smoke ring. It
would have been extremely difficult, if not impossible, for an an-
imator to achieve such detailed and precise smoke formations and
motion by manually adjusting wind fields and other smoke simula-
tion parameters.

In a recent pioneering work Treuilleet al. [2003] introduced a
method for keyframe control of smoke simulations. They employ a

∗e-mail: raananf@cs.huji.ac.il
†e-mail: danix@cs.huji.ac.il

Figure 1: A smoke galleon sails through a ring of smoke (side and
front views).

shooting technique to solve for the optimal wind forces that would
cause a smoke simulation to approximate a set of user-specified
keyframes as closely as possible. While this method has produced
some very impressive results, it is highly computationally intensive,
because it solves a very difficult multi-dimensional non-linear op-
timization problem. We discuss this method and its drawbacks in
more detail in section 2.1.

Inspired by the work of Treuilleet al. [2003], we also focus on
smoke animation control, but explore a different control paradigm:
target-drivensmoke animation. Rather than attempting to opti-
mally approximate a set of keyframes, we control the simulation
by a sequence of target smoke states, each serving in turn as anat-
tractor for the simulated smoke. This is achieved by augmenting
the standard fluid dynamics equations with closed-form terms de-
signed specifically to drive the simulation from any given state to-
wards a user-specified smoke density target. Our control paradigm
does not guarantee that each target is approximated in an optimal
manner before switching to the next one, but it eliminates the need
for expensive non-linear optimization. Thus, complex and inter-
esting smoke animations, such as the one shown in Figure 1, are
generated with very little additional cost compared to an ordinary
smoke simulation.

Specifically, our main contributions are: (i) a newdriving force
term in the momentum equation, designed to induce the fluid flow
that will carry the current smoke density towards a user-specified
smoke density target; (ii) a newgatheringterm in the smoke ad-
vection equation, designed to counteract diffusion of smoke due to
numerical dissipation, thereby improving the ability of the simula-
tion to match arbitrary targets; (iii) we provide animators with the
ability to independently control several smoke fields sharing a fluid.

The remainder of this paper is structured as follows. In the next
section we briefly survey relevant previous work, and review the
standard equations commonly used for simulating fluid flow. In
section 3 we derive our modified flow equations. Section 4 de-
scribes the implementation of our simulator. We present some of
the results we were able to achieve with our technique in section 5.
Section 6 concludes the paper.

2 Background

2.1 Previous work

Many researchers in the field of computer graphics have used
physically-based models and computational fluid dynamics (CFD)
to simulate fluid flows. We will not attempt to provide a complete
survey of such methods; the interested reader can find good sur-
veys in the previous work sections of [Stam 1999], [Fedkiw et al.
2001], and [Treuille et al. 2003]. Instead, we focus on the different
mechanisms for controlling fluid flows.

Foster and Metaxas [1997] describe a mechanism referred to as
“embedded controllers” via which an animator may introduce var-
ious effects into fluid animations by adapting boundary and fluid
properties, and pressure and velocity fields. Thus, animators need
not understand the fluid dynamics equations, nor the low-level de-
tails of the solver. However, they must understand the dynamics of
the effect they are interested in achieving.

Witting [1999] describes the CFD tool that was used at Dream-
Works Feature Animation to produce smoke and fluid effects for
the feature filmThe Prince of Egypt. With this tool animators drive
fluid simulations by using images and animated sequences to spec-
ify inputs such as initial temperature fields, heat sources, and forc-
ing functions. Another production tool that provides animators both
artistic and behavioral control for animation of flames is described
by Lamorlette and Foster [2002]. However, neither of these tools
support direct control over the desired results.

As already mentioned earlier, the most relevant previous work,
which inspired our own, is that of Treuilleet al. [2003]. In their
approach an animator controls a smoke simulation by specifying
smoke density keyframes. Continuous quasi-Newton optimization
is then used to solve for the control forces that would cause the sim-
ulated smoke to approximate the keyframes while minimizing the
amount of force. The control force field is defined by a collection
of parametric wind and vortex forces, and the optimization process
searches for the appropriate parameter values.

While this approach has produced some very impressive results,
it suffers from several drawbacks. First, the optimization frame-
work is very expensive, as it requires multiple evaluations of the
objective function and of its gradient. Each evaluation performs an
entire simulation and, in addition to computing the velocity and the
smoke density, their derivatives with respect to each of the control
parameters are computed as well. Furthermore, the dimensional-
ity of the optimization problem grows with the length of the sim-
ulation, so it is necessary to split the original problem into sev-
eral smaller optimization problems, organized in two overlapping
schedules, and to alternate between them. The dimensionality and
cost concerns also dictate using a small number of control forces
and a relatively coarse grid, making it difficult to specify and match
highly detailed keyframes.

In contrast, the approach described in this paper does not in-
volve solving an optimization problem, and a target-driven smoke
animation may be obtained at nearly the same cost as a single or-
dinary simulation. Our approach does not require keeping track of
derivatives, and thus we are free to use non-differentiable numeri-
cal schemes, such as flux limiter based hyperbolic solvers [Leveque
2002], which improve the accuracy of our simulations.

On the other hand, it should be pointed out that our target-
driven approach does not provide direct control over the quality
with which targets are matched. Instead, the animator is provided
with several intuitive parameters for controlling the rate at which
smoke evolves, as well as other characteristics of the simulation.

Also, we do not attempt to minimize the forces involved in the
process, and the resulting simulation is not always physically realiz-
able, because we employ a non-physical gathering term. However,
our results demonstrate that interesting and complex smoke anima-
tions may be obtained without these additional constraints.

2.2 Problem statement

Let us denote byρ = ρ(x, t) the time-dependent scalar field that
specifies the density of smoke at locationx and timet. Given an
initial smoke density,ρ0 = ρ(x,0), and a sequence of target den-
sitiesρ∗

i = ρ∗(x, ti), our goal is to produce an animation in which
the smoke is driven towards each of these targets in turn, while
maintaining smoke-like dynamics and appearance. More specifi-
cally, during each time interval(ti−1, ti) the smoke should evolve
towards the targetρ∗

i . Note that unlike in traditional keyframe ani-
mation our problem statement does not require thei-th target to be
matched precisely at timeti , but rather that at timeti the i-th target
ceases to attract the smoke andρ∗

i+1 becomes the attractor instead.

2.3 The equations of flow

Realistic smoke animations are typically generated by numerically
approximating either the Navier-Stokes or the Euler equations.1

These equations govern the mechanics of a medium fluid (thin air)
in which smoke is present. Denoting the fluid velocity vector field
by u = u(x, t) and its temporal derivative byut , the inviscid Euler
equations for incompressible flow are:

ut = −u ·∇u−∇p+ f (1)

∇ ·u = 0 (2)

where p = p(x, t) is the hydrostatic pressure andf accounts for
external forces affecting fluid flow, such as gravity and buoyancy.
Equation 1 is the balance of momentum equation (Newton’s second
law) for a fluid with unit density. Equation 2 is thecontinuity equa-
tion, which enforces conservation of mass. An additional equation
describes the transport of smoke by the fluid flow (advection):

ρt = −u ·∇ρ (3)

Hereρt is the temporal derivative of the smoke density fieldρ .
The external forces termf in equation 1 provides an important

means of control over the smoke simulation. For example, Stam
[1999] used this term to allow a user to control the flow by dragging
a mouse. Treuilleet al. [2003] include in this term a set of param-
eterized wind and vortex forces. Their optimization process then
searches for parameter values that cause the simulation to match
the specified keyframes. Thus, in their approachf implicitly de-
pends on the initial smoke densityρ0 and the target densityρ∗.
Our approach also utilizes the force term in order to drive the simu-
lation from a given initial state to a target state, but this is achieved
by introducing a driving force term that depends only on the in-
stantaneous state of the system, rather than being defined by some
global optimization condition; it is an explicit yet simple function
f = F(ρ,ρ∗).

3 Modified Equations of Flow

Our approach entails two modifications to the fluid flow equations
presented above. First, as already mentioned, we set the external
force termf in equation 1 toF(ρ,ρ∗) and add a momentum attenu-
ation term−νd u:

ut = −u ·∇u−∇p+νf F(ρ,ρ∗)−νd u (4)

We shall refer toF as thedriving force term, since it is designed to
exert forces on the fluid in such a manner that the resulting flow will
carry the smoke to the prespecified target densityρ∗. This term is

1The Navier-Stokes equations contain a viscosity term, not present in the
inviscid Euler equations.

derived in section 3.1. The momentum attenuation term is added as
a means for limiting the accumulation of momentum in the system.

Second, we add asmoke gathering termG(ρ,ρ∗) to equation 3:

ρt = −u ·∇ρ +νg G(ρ,ρ∗) (5)

The purpose of this term is to counteract numerical dissipation that
causes smoke to diffuse. It enables our simulations to closely ap-
proximate a target density field, even if it is “sharper” than the initial
density field. We derive the gathering term in section 3.2.

These new terms are controlled by the non-negative parameters
νf , νd, andνg, whose effect is discussed in section 3.4.

3.1 The driving force

In this section we develop an appropriate expression for the driving
force termF. Recall that the purpose of this force, at any given
time t, is to cause the fluid to advect the current smoke density
ρ(x, t) towards the next targetρ∗(x). Furthermore, we must also
take care to defineF in a manner that would enable the fluid to reach
a rest state,u = ut = 0, once the target has been reached. Failure to
enforce this requirement will cause undesirable fluctuations even in
regions whereρ = ρ∗.

The rest state requirement may be satisfied by ensuring that the
amount of momentum generated byF decreases asρ approaches
ρ∗, allowing the momentum attenuation term to bring the system to
u = ut = 0 whenρ = ρ∗. In this state, equation 4 reduces to

F(ρ∗,ρ∗) = ∇p.

This means that rather than forcingF to vanish, we can simply allow
the hydrostatic pressure to cancel it out. Thus, it suffices to ensure
that F(ρ∗,ρ∗) is a gradient of some potential field, rather than an
arbitrary vector field.

Note that the gradient of the target density∇ρ∗ always points
uphill towards higher concentrations ofρ∗. This means that the
gradient is the desired direction of flow, and to induce it we align
the driving force at any pointx with ∇ρ∗(x):

F(ρ,ρ∗) ∝ ∇ρ∗

In practice, however,ρ∗ may be constant in some regions of the
domain, causing∇ρ∗ = 0 there. In order to avoid this problem we
use a blurred version ofρ∗, which we denotẽρ∗. In order to ensure
that∇ρ̃∗ 6= 0 everywhere, the blurring filter must have sufficiently
large support. The filter should also fall off rapidly in order to avoid
unnecessarily smoothing the directions of the gradients. In our im-
plementation we obtaiñρ∗ by convolvingρ∗ with a Gaussian kernel
given by

g(x) = e−x>x/σ2
(6)

with a small value forσ . Although the gradient∇ρ̃∗ is non-zero
everywhere, its magnitude is very small away from regions where
the target is defined, because of the rapid falloff of the blurring filter.
Therefore, we use a “normalized” gradient instead:

F(ρ,ρ∗) ∝
∇ρ̃∗

ρ̃∗
.

Note that we are guaranteed thatρ̃∗ > 0, since it is obtained by con-
volving the non-negative functionρ∗ with a Gaussian. As we shall
see shortly, this form of normalization enables the driving force to
comply with the rest state requirement.

In order to avoid applying forces unnecessarily, the magnitude
of the driving force should be roughly proportional to the actual
smoke densityρ . This could have been achieved by setting

F(ρ,ρ∗) = ρ
∇ρ̃∗

ρ̃∗
,

however, this expression does not comply with the rest state require-
ment. In order to fix this it suffices to replaceρ with its blurred
versionρ̃ :

F(ρ,ρ∗) = ρ̃
∇ρ̃∗

ρ̃∗
. (7)

Note that forρ = ρ∗ this definition gives us

F(ρ∗,ρ∗) = ρ̃∗ ∇ρ̃∗

ρ̃∗
= ∇ρ̃∗,

and thusF(ρ∗,ρ∗) is indeed a gradient of a potential field.

3.2 Smoke gathering

In general, it is not possible to match a given target density field
solely by advection. Consider, for example, a case where the tar-
get fieldρ∗ contains higher values and higher gradients than those
present in the initial fieldρ0. In the course of a simulation these
initial values and gradients only decrease because of numerical dis-
sipation, and therefore will never achieve the target values. Even
if we were to somehow avoid numerical dissipation, it would still
be impossible to match such a target: from the mathematical stand-
point, due to incompressibility of the fluid, any advection applied
to ρ0 is merely a spatial remapping of this density distribution, in-
capable of generating any new density values. Tackling this issue
by introducing an inverse diffusion operator, such as−α∇2ρ , is
physically unstable [Press et al. 1992]. Instead, we introduce an al-
ternative mechanism, which we refer to assmoke gathering. This
mechanism is enforced by theG(ρ,ρ∗) term in equation 5.

Let us assume that the total mass of the simulated smoke (the
integral of ρ over the entire domain) is equal to that of the tar-
get smoke.2 Now consider the time varying “density error” field
e(x, t) = ρ(x, t)− ρ∗(x). Obviously, any large differences in the
values and/or gradients betweenρ andρ∗ give rise to high values
and high gradients ine. The essence of our idea is to apply diffusion
to egradually smoothing it as time goes by. This is a stable process
that will eventually makeeconstant across the entire domain, which
impliesρ = ρ∗, because of mass conservation.

Formally, we would like the density errore to satisfy the follow-
ing diffusion equation:

et = ∇2e (8)

with the von Neumann boundary conditions

∂e
∂n

= 0,

which essentially state that the equation must be resolved inside the
domain, as no flux ofe across the boundary is allowed. As time
advances,ebecomes zero across the domain, which implies that

e= ρ −ρ∗ = 0 and ∇e= ∇ρ −∇ρ∗ = 0.

Thus, diffusing the error enablesρ to evolve exactly intoρ∗, given
enough time.

Substituting the definition ofe into equation 8 and noting thatρ∗

is constant with respect to time, we obtain the following equation
in ρ :

ρt = ∇2(ρ −ρ∗). (9)

Thus, in order to achieve diffusion of the error, we could simply set
G(ρ,ρ∗) = ∇2(ρ −ρ∗) in equation 5. In practice, however, we’d

2We can always scale the source or the target to make sure that the two
masses are equal to each other.

like the gathering effect to occur only in the close vicinity of the
targetρ∗, otherwise we end up simply diffusingρ :

ρt = ∇2(ρ −ρ∗) ≈ ∇2ρ.

In addition, gathering should only be allowed to occur where some
smokeρ is actually present, otherwise we might obtain negative
values ofρ . To account for these requirements we rewrite equation
9 as

ρt = ∇ ·∇(ρ −ρ∗),

where∇(ρ −ρ∗) is the error flux, and modulate the error flux by
bothρ̃∗ andρ . Thus, our gathering term becomes

G(ρ,ρ∗) = ∇ · [ρρ̃∗ ∇(ρ −ρ∗)]. (10)

Note that in this modified form the gathering term is still a conser-
vation law, soρ and henceeare conserved.

Figure 2 shows frames from a simple animation sequence com-
puted with and without the gathering term (rows B and A, respec-
tively). Note that without the gathering term the simulation fails to
converge to its target. By enabling the gathering only in the vicin-
ity of the target no diffusion is introduced in the early stages of the
simulation.

A

B

C

Figure 2: The top row shows the initial densityρ0 on the left and the
target densityρ∗ on the right. Each of the next three rows shows
three frames from a resulting simulation. RowA was generated
with the gathering term disabled, and the simulation fails to con-
verge to the target. Turning gathering on enables the simulation to
converge (rowB). Row C was generated using a first order hyper-
bolic solver. The resulting frames are blurrier and contain less de-
tail than those in rowB, which were generated using a second order
solver. The full sequences are available on the ACM SIGGRAPH
2004 Full Conference DVD-ROM.

3.3 Multiple field flow

Our driving force term attracts any smoke present in the system
towards the nearest “peak” of the target density. To provide the
animator with more precise control over the affinity between the
smoke and the target it is sometimes useful to split the smoke in
the system to a number of independent density fields, each with its
own set of initial and target states. Although each smoke field is
controlled independently, there is an implicit interaction between
them, as they are advected by, and exert driving forces on, the same
fluid. Givenn smoke fieldsρ1, . . . ,ρn and their corresponding tar-
getsρ∗,1, . . . ,ρ∗,n the only change in equation 4 is that the driving
force is now the sum of then driving forcesF(ρ i ,ρ∗,i) and we now
haven advection equations for the smoke fields, instead of one:

ρ i
t = −u ·∇ρ i +νg G(ρ i ,ρ∗,i)

Note, however, that there is still only one velocity fieldu.

3.4 Control parameters

The simulations produced by our methods are controlled via four
parameters: the force smoothing parameterσ (eq. 6), the force co-
efficient νf , the momentum attenuation coefficientνd (eq. 4), and
the gathering coefficientνg (eq. 10):

σ – Increasing the value of this parameter results in a smoother
driving force, inducing more moderate flows. Smoke is ad-
vected towards its target in a more organized manner, with
less distortion and splitting along the way. On the other hand,
increasingσ makes it more difficult for the flow to causeρ
to form the finer features ofρ∗. Decreasingσ creates more
turbulent flows and a more chaotic smoke evolution.

νf – This parameter allows the animator to boost or weaken the
driving force, thus affecting the speed at which the simulation
progresses towards the current target state.

νd – This parameter determines the rate of momentum attenuation.
Increasing it results in a more controlled, viscous-like flow,
making it less likely for smoke to gain too much momentum
and overshoot its target.

νg – This parameter determines the rate at whichρ is gathered to-
wardsρ∗. Increasing it reduces the amount of “stray” smoke
in the simulation. On the other hand, setting the gathering rate
too high makes the convergence ofρ to ρ∗ appear less natural,
as discussed in section 5.1.

Animations demonstrating the effect of each of these parameters
are available on the DVD-ROM.

4 Numerical simulation

Given an initial velocity fieldu0, initial smoke densityρ0, and a
target smoke densityρ∗ we simulate the fluid flow and the resulting
motion of smoke by numerically solving equations 2, 4, and 5 over
a series of discrete time steps.

Equations 4 and 5 express the rate of change ofu andρ as a sum
of terms, each representing a different contribution. Such equations
are often solved by the method offractional steps, also known as
operator splitting[Press et al. 1992]. The same approach is used
by Stam [1999] and by Fedkiwet al. [Fedkiw et al. 2001]. The
main idea behind this method is to solve the original equation by
integrating a succession of simpler equations, each with a single
term on its right hand side. Each of the simpler equations can be
treated more effectively by choosing the most appropriate method
for integrating it. Specifically, we perform the following sequence
of fractional steps in each time step:

1. Apply driving forces:ut = νf F(ρ,ρ∗)

2. Attenuate momentum:ut = −νd u

3. Advect momentum:ut = −u ·∇u

4. Project: solve for the pressure fieldp given by the Poisson
equation∇2p = ∇ ·u and subtract∇p from u.

5. Advect smoke:ρt = −u ·∇ρ

6. Gather smoke:ρt = νg G(ρ,ρ∗).

In our implementation, steps 3, 5 and 6 are restricted by a CFL con-
dition resulting from the explicit hyperbolic scheme used at these
steps (described in appendix A). Formally, step 2 imposes another
restriction on the maximal time step to be less than 1/νd. In prac-
tice, this is not a limitation as the typical values ofνd are quite
small.

In the remainder of this section we describe our specific imple-
mentation of these steps. We employ standard state-of-the-art CFD
techniques, described here for completeness. Thus, readers not in-
terested in implementation details may safely skip the remainder of
this section.

4.1 The computational grid

P

ρ
i,j,k

Vi,j−1/2,k

Vi,j+1/2,k

Ui+1/2,j,k

Ui−1/2,j,k

i,j,k

Figure 3: Variables on the computational grid (in 2D).

We use a regular 3D grid to solve our equations numerically us-
ing finite differences. We use a staggered arrangement of the differ-
ent variables [Harlow and Welch 1965]: the velocity variables are
defined at the centers of the cell faces, while the pressure and den-
sity variables are defined at the center of each cell (see Figure 3).
Such an arrangement avoids the infamous checkerboard instability
[Trottenberg et al. 2001], and it has also been used in previous fluid
simulators in computer graphics [Foster and Metaxas 1996; Fedkiw
et al. 2001]. We use the half-way index notation to distinguish be-
tween the different variable locations: for example, the variables for
velocity components along thex, y, andzaxes are denotedUi± 1

2 , j,k,

Vi, j± 1
2 ,k, andWi, j,k± 1

2
, respectively, while the density variables are

denotedρi, j,k. Thus,Ui+ 1
2 , j,k is located at((i + 1/2)∆x, j∆y,k∆z),

where∆x, ∆y, and∆z are the the cell spacings along thex, y, and
z axes, respectively. When necessary, we denote the number of the
fractional step using a parenthesized superscript.

4.2 Discrete operators

For compactness and readability we introduce notation for several
discrete operators. First derivatives are approximated halfway be-
tween the positions of the corresponding variable. For example, the
first derivative of the velocity along thex axis is approximated as

Dx(U)i, j,k =
1

∆x
(Ui+ 1

2 , j,k−Ui− 1
2 , j,k)

and the first derivative of the density along they axis is

Dy(ρ)i, j+ 1
2 ,k =

1
∆y

(ρi, j+1,k−ρi, j,k).

Second derivatives are approximated at the positions where the
variables are defined. For example,

Dzz(W)i, j,k+ 1
2

=
1

∆z2 (Wi, j,k+ 3
2
−2Wi, j,k+ 1

2
+Wi, j,k− 1

2
)

is the second derivative of the velocity along thez axis.
Occasionally, we require the value of a field halfway between

the locations where its variables are defined. In such cases, we
approximate the value by using simple averaging. For example,

A (V)i, j,k =
1
2
(Vi, j+ 1

2 ,k +Vi, j− 1
2 ,k)

is the velocity along they axis at the center of a cell.

4.3 Applying the driving force

Components of the driving force must be evaluated for each updated
velocity variable at its corresponding location. We denote these
componentsFu

i± 1
2 , j,k

, Fv
i, j± 1

2 ,k
, andFw

i, j,k± 1
2
. Each of these compo-

nents is evaluated by approximating equation 7 at the corresponding
grid point, using a discrete derivative operator and averaging:

Fu
i+ 1

2 , j,k
= A (ρ̃)i+ 1

2 , j,k

Dx(ρ̃∗)i+ 1
2 , j,k

A (ρ̃∗)i+ 1
2 , j,k

and similarly forFv andFw. The velocity variables are then up-
dated as follows:

U (1)

i+ 1
2 , j,k

= U (0)

i+ 1
2 , j,k

+∆t νf Fu
i+ 1

2 , j,k

Note that whenρ = ρ∗, the driving force is “projected out” by
the projection step in thediscrete sense, allowing the discrete ve-
locity variables to be at rest. This is due to the fact that in this case
the discrete force components reduce to

Fu
i+ 1

2 , j,k
= Dx(ρ̃∗)i+ 1

2 , j,k

that is, the gradient of a discrete potential function, which is exactly
what is being eliminated by the projection step.

4.4 Advection and Gathering terms

The advection term appearing in fractional steps 2 and 5 can be
written in conservation form

qt = −u ·∇q = −(uq)x− (vq)y− (wq)z

whereq stands for eitheru or ρ . We solve this equation as three
separate 1D hyperbolic equations

qt = −(uq)x

qt = −(vq)y

qt = −(wq)z

using the high resolution hyperbolic solver described in Appendix
A. This is a second-order numerical scheme that is considerably
less prone to numerical dissipation compared to first-order schemes.
Thus, for a given grid resolution more turbulent flows are obtained,
and the fine features of the evolving smoke are better preserved.

These advantages are demonstrated in Figure 2, where row C shows
the result of first order upwinding, compared to the second order
scheme in row B.

The gathering term defined by equation 10 is already given in
conservation form, and is also solved by the same solver, indepen-
dently for each axis:

ρt = [ρρ̃∗ (ρ −ρ∗)x]x

ρt = [ρρ̃∗ (ρ −ρ∗)y]y

ρt = [ρρ̃∗ (ρ −ρ∗)z]z

4.5 Projection

The discrete velocity field(U,V,W)(3) after fractional step 3, is not
divergence free. To impose equation 2 discretely, we use Chorin’s
projection technique [1967]. We recover a divergence free field
(U,V,W)(4) in the discrete sense, i.e.

(Dx(U
(4))+Dy(V)(4) +Dz(W)(4))i, j,k = 0,

by subtracting the gradient of the pressure fieldP:

U (4)

i+ 1
2 , j,k

= U (3)

i+ 1
2 , j,k

−Dx(P)i+ 1
2 , j,k

V(4)

i, j+ 1
2 ,k

= V(3)

i, j+ 1
2 ,k

−Dy(P)i, j+ 1
2 ,k

W(4)

i, j,k+ 1
2

= W(3)

i, j,k+ 1
2
−Dz(P)i, j,k+ 1

2

Combining the above equations, we get the following set of equa-
tions for the pressure variablesPi, j,k

(Dxx(P)+Dyy(P)+Dzz(P))i, j,k = (11)

(Dx(U
(3))+Dy(V

(3))+Dz(W
(3)))i, j,k,

which is a discretization of the Poisson equation∇2p = ∇ ·u. This
is a large sparse set of linear equations, which we solve using a
standard multigrid solver [Trottenberg et al. 2001].

The values of the velocity variables on the boundary are pre-
scribed by the boundary conditions, so there we have(U,V,W)(4) =

(U,V,W)(3). Consequently, for the left boundary cells, equation 11
reads

1
∆x2

(

P1, j,k−P0, j,k
)

+Dyy(P)0, j,k +Dzz(P)0, j,k =

1
∆x

(

U (3)
1
2 , j,k

−U (3)

− 1
2 , j,k

)

+Dy(V
(3))0, j,k +Dz(W

(3))0, j,k.

This is also the case for all the other boundaries.

5 Results and Discussion

We have implemented our method in 2D and in 3D using the C++
programming language. All of the timings reported below were
measured on a 2.4GHz Pentium IV with 1GB of RAM running
Linux. For 2D simulations on a 2562 grid a single time step takes
0.25 seconds. For 3D simulations on a 1283 grid each time step
takes 10.6 seconds. This is only about 15 percent slower than the
computation time for an ordinary smoke simulation (without our
driving force and gathering terms) using the same implementation.

In all of the examples shown in this section we used between 5
and 15 adaptive timesteps for each animation frame, so each sec-
ond of a 20fps animation took about 50 seconds of simulation time
in 2D, and about 35 minutes in 3D. This is faster by at least two

orders of magnitude than the running times in [Treuille et al. 2003],
where they report that it took 2–5 hours to optimize a 50×50 2D
simulation.

We experimented with two different kinds of smoke animations.
In the first kind we use target states that are very different from each
other, in essence producing a morphing sequence between pairs of
states. Examples are shown in Figures 4 and 5.

Figure 4 shows several frames from a transforming 2D logo se-
quence. Despite the very different and complex target states our
method manages to approximate the targets quite well, while main-
taining fluid-like behavior. Note that the entire simulation was per-
formed on a single grid without any spatial or temporal splitting,
enabling interesting global interactions: the smoke starts out as a
single body, then splits to form separate letters, which later join
again to form the final logo.

Figure 5: The Stanford bunny is formed by smoke emitted from two
sources.

Figure 5 is an example where rather than morphing between two
targets we specify a single target and two smoke sources that gen-
erate smoke during the first half of the animation. The driving force
is very effective at directing the two turbulent smoke streams from
the sources to accurately form the shape of the Stanford bunny.

Another kind of smoke animations are those defined by a dense
sequence of similar targets. The idea is that we can voxelize an an-
imated 3D object and use the resulting volumes to drive a smoke
animation. Frames from two such animations are shown in Fig-
ure 6. Here the overall motion is dictated by the targets, and the
characters are still quite recognizable, but they exhibit interesting
smoke-like dynamics. The gathering term is instrumental here, as
it enables the smoke to track the moving character for as long as
needed.

As discussed in section 3.3, our system allows animators to con-
trol several smoke fields independently. Figure 7 demonstrates this
for two smoke fields, each visualized using a different color. Here
the use of two fields allows us to specify that the right half of the

Figure 6: Top row: a walking mouse. Bottom row: a leaping tiger.

Figure 4: Fluid logo. The five targets are shown in the top row, and six frames from the resulting animation are shown in the bottom row.

Figure 7: Yin-Yang: control of two smoke fields.

circle should flow towards the lower left corner, while the left half
should flow to the upper right, which could not have been achieved
with a single smoke field.

Finally, Figure 8 shows a 3D animation which utilizes a combi-
nation of all of the elements described above. In one smoke field
a sphere evolves into a ring of smoke, while in another field the
smoke tracks the shape of a galleon sailing through the smoke ring.
Note that the two fields interact with each other via their shared
medium fluid.

5.1 Limitations

Smoke diffusion is unavoidable in numerical simulations. As
pointed out in section 3.2, it presents a serious problem in the con-
text of controlled smoke animations. The gathering term we have
introduced does provide a partial remedy to this problem, as it en-
ables the simulation to converge to an arbitrary target. However, the
resulting smoke transition does not always come across as a natu-

Figure 8: A galleon of smoke sailing through a smoke ring.

ral evolution of smoke, since it is based on a diffusion process and
not on kinetics. For example, the animation might sometimes look
like the target is simply emerging from an amorphous static cloud
of smoke. Thus, the gathering mechanism should be employed to
the least extent necessary, leaving the task of forming the target, as
much as possible, to the advection induced by the driving force.

As pointed out earlier, the target-driven paradigm does not guar-
antee optimal approximation of the targets, and the animator can-
not directly control how well a particular target is approximated
at a specific instant in time. However, the animator may control
the simulation progress in a less direct manner via theνf parame-
ter. Mechanisms for more precise time and accuracy control would
make a good topic for further research.

Finally, just as in traditional keyframe animation, skill and expe-
rience are still required in order to choose the right target states and
the appropriate control parameters to achieve a good animation.

6 Conclusion

We have presented a new method for direct control of smoke ani-
mation by introducing new terms into the standard flow equations.
Each of these terms has a simple closed form, and consequently
they allow complex smoke animations to be controlled with little
additional expense on top of the cost of an ordinary simulation.

Similarly to previous methods for simulation of smoke [Fedkiw
et al. 2001] our simulator is easily extended to support the usual
external forces (gravity, buoyancy, etc) in addition to the driving
force. It is also possible to add obstacles represented by internal
boundary conditions.

In future work it might be interesting to experiment with other
terms for driving the smoke through a sequence of target states, as
well as other anti-diffusion mechanisms. In particular, we would
like to explore a multi-resolution version of our gathering term to

make gathering faster, more responsive, and more natural looking.
Another interesting direction would be to explore additional

mechanisms for controlling smoke animations. For example, the
animator may want to sketch out preferred paths for the smoke
to flow along, without the need to generate many intermediate
keyframes between the starting and the ending positions.

Acknowledgments

We would like to thank Eri Rubin for providing us with the input
animations of the walking mouse and the leaping tiger, and Raz
Kupferman for serving as a sounding board throughout this project.
Thanks also go to Siggraph’s anonymous reviewers for their com-
ments. This work was supported in part by the Israel Science Foun-
dation founded by the Israel Academy of Sciences and Humanities
and by the Israeli Ministry of Science and Technology.

References

CHORIN, A. J. 1967. A numerical method for solving incompress-
ible viscous flow problems.Journal of Computational Physics
2, 12–16.

ENRIGHT, D., MARSCHNER, S., AND FEDKIW, R. 2002. Ani-
mation and rendering of complex water surfaces.ACM Transac-
tions on Graphics (Proceedings of ACM SIGGRAPH 2002) 21,
3 (July), 736–744.

FEDKIW, R., STAM , J., AND JENSEN, H. W. 2001. Visual sim-
ulation of smoke. InComputer GraphicsProceedings, Annual
Conference Series, E. Fiume, Ed., ACM SIGGRAPH, 15–22.

FOSTER, N., AND FEDKIW, R. 2001. Practical animations of
liquids. InComputer GraphicsProceedings, Annual Conference
Series, E. Fiume, Ed., ACM SIGGRAPH, 23–30.

FOSTER, N., AND METAXAS, D. 1996. Realistic animation of
liquids. Graphical Models and Image Processing 58, 5 (Sept.),
471–483.

FOSTER, N., AND METAXAS, D. 1997. Controlling fluid anima-
tion. In Proceedings CGI ’97, 178–188.

HARLOW, F. H., AND WELCH, J. E. 1965. Numerical calculation
of time-dependent viscous incompressible flow of fluid with free
surface.The Physics of Fluids 8(Dec.), 2182–2189.

LAMORLETTE, A., AND FOSTER, N. 2002. Structural modeling
of flames for a production environment.ACM Transactions on
Graphics (Proceedings of ACM SIGGRAPH 2002) 21, 3 (July),
729–735.

LEVEQUE, R. J. 2002. Finite Volume Methods for Hyperbolic
Problems. Cambridge University Press.

NGUYEN, D. Q., FEDKIW, R., AND JENSEN, H. W. 2002. Phys-
ically based modeling and animation of fire.ACM Transac-
tions on Graphics (Proceedings of ACM SIGGRAPH 2002) 21,
3 (July), 721–728.

PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T., AND
FLANNERY, B. P. 1992. Numerical Recipes in C: The Art of
Scientific Computing, 2nd ed. Cambridge University Press.

STAM , J. 1999. Stable fluids. InComputer GraphicsProceed-
ings, Annual Conference Series, A. Rockwood, Ed., ACM SIG-
GRAPH, 121–128.

TREUILLE, A., MCNAMARA , A., POPOVIC, Z., AND STAM , J.
2003. Keyframe control of smoke simulations.ACM Transac-
tions on Graphics (Proceedings of ACM SIGGRAPH 2003) 22,
3 (July), 716–723.

TROTTENBERG, U., OOSTERLEE, C., AND SCHÜLLER, A. 2001.
Multigrid. Academic Press.

WITTING , P. 1999. Computational fluid dynamics in a tradi-
tional animation environment. InComputer GraphicsProceed-
ings, Annual Conference Series, A. Rockwood, Ed., ACM SIG-
GRAPH, 129–136.

A A high resolution hyperbolic solver

The solution for hyperbolic conservation laws of the form

qt +(H(q))x = 0

can be approximated numerically by using theLax-Wendrofffor-
mula, corrected by a “flux limiter”, described in detail in [Leveque
2002]. The idea is improve the accuracy of 1st order upwinding
by adding an anti-diffusive correction term. The correction term is
modulated by aflux limiter in order to prevent oscillations.

More formally, the scheme uses the following update equation

Qn+1
i = Qn

i −
∆t
∆x

(Hi+ 1
2
(Qn)−Hi− 1

2
(Qn)).

HereQi approximates the average density of the conserved quantity
q in the cell[(i−1/2)∆x,(i +1/2)∆x]. Thenumerical flux function
Hi+ 1

2
approximates the fluxH(q) across the boundary between two

neighboring cells(i, i +1). The numerical flux function defined by
the Lax-Wendroff formula is given by

H
LW(Qn) = H

U (Qn)+C (Qn),

whereH U is the1st order upwindingflux function defined by

H
U

1+ 1
2
(Qn) =

{

si+ 1
2
Qn

i si+ 1
2

> 0
si+ 1

2
Qn

i+1 si+ 1
2

< 0

Here si+ 1
2

approximates theflux speed∂H/∂q at ∆x(i + 1
2), and

C (Qn) is an anti-diffusive correction term given, in its limited form,
by

C (Qn) = (1−
∆t
∆x

|si+ 1
2
|) mml(Qn)i+ 1

2

wheremml is a flux limiter (similar to the commonly usedminmod
limiter [Leveque 2002]) given by

mml(Qn)i+ 1
2

= sgn·min{|Qn
i+2−Qn

i+1|, |Q
n
i+1−Qn

i |, |Q
n
i −Qn

i−1|}

where

sgn=

1 Qn
i+2−Qn

i+1,Q
n
i+1−Qn

i ,Q
n
i −Qn

i−1 > 0
−1 Qn

i+2−Qn
i+1,Q

n
i+1−Qn

i ,Q
n
i −Qn

i−1 < 0
0 otherwise

As this scheme is based on the Lax-Wendroff formula, it is sub-
ject to a time step restriction:∆t < ∆x/s, wheres is the maximal
flux speed.

We use this scheme to approximate the advection terms in the
smoke and momentum equations, as well as the smoke gathering
term. In the case of advection, the flux speed is simply the velocity
along an axis. Therefore, when advecting a quantity along a partic-
ular axis, we need the proper velocity component, approximated on
the faces perpendicular to that axis. In the case of smoke advection,
the cells around the smoke variables coincide with the computa-
tional grid cells, so the flux speed is simply given by the velocity
variables. When advecting the momentum componentsU,V,W, we
obtain the flux speed on the boundaries between the cells around
these variables by the proper averaging.

In the gathering case the flux speed should be evaluated on the
faces of computational grid cells:

si+ 1
2

= A (ρ̃∗)i+ 1
2 , j,kDx(ρ −ρ∗)i+ 1

2 , j,k.

