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Figure 1: Color transfer using our method. The reference image (a) was taken indoors using a flash, while the source image (b) was taken
outdoors, against a completely different background, and under natural illumination. Our correspondence algorithm detects parts of the
woman’s face and dress as shared content (c), and fits a parametric color transfer model (d). The appearance of the woman in the result (e)
matches the reference (a).

Abstract

This paper presents a new efficient method for recovering reli-
able local sets of dense correspondences between two images with
some shared content. Our method is designed for pairs of im-
ages depicting similar regions acquired by different cameras and
lenses, under non-rigid transformations, under different lighting,
and over different backgrounds. We utilize a new coarse-to-fine
scheme in which nearest-neighbor field computations using Gener-
alized PatchMatch [Barnes et al. 2010] are interleaved with fitting
a global non-linear parametric color model and aggregating consis-
tent matching regions using locally adaptive constraints. Compared
to previous correspondence approaches, our method combines the
best of two worlds: It is dense, like optical flow and stereo re-
construction methods, and it is also robust to geometric and pho-
tometric variations, like sparse feature matching. We demonstrate
the usefulness of our method using three applications for automatic
example-based photograph enhancement: adjusting the tonal char-
acteristics of a source image to match a reference, transferring a
known mask to a new image, and kernel estimation for image de-
blurring.
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1 Introduction

Establishing correspondences between images is a long-standing
problem with a multitude of applications in computer vision and
graphics, ranging from classical tasks like motion analysis, track-
ing and stereo, through 3D reconstruction, object detection and re-
trieval, to image enhancement and video editing. Most existing cor-
respondence methods are designed for one of two different scenar-
ios. In the first scenario, the images are close to each other in time
and in viewpoint, and a dense correspondence field may be estab-
lished using optical flow or stereo reconstruction techniques. In the
second, the difference in viewpoint may be large, but the scene con-
sists of mostly rigid objects, where sparse feature matching meth-
ods, such as SIFT [Lowe 2004], have proven highly effective.

In this paper, we present a new method for computing a reliable
dense set of correspondences between two images. In addition to
the two scenarios mentioned above, our method is specifically de-
signed to handle a third scenario, where the input images share
some common content, but may differ significantly due to a va-
riety of factors, such as non-rigid changes in the scene, changes
in lighting and/or tone mapping, and different cameras and lenses.
This scenario often arises in personal photo albums, which typically
contain repeating subjects photographed under different conditions.

Our work is motivated by the recent proliferation of large personal
digital photo collections and the tremendous increase in the num-
ber of digital photos readily available on the internet. Because of
these trends, it has become increasingly possible to enhance and
manipulate digital photographs by retrieving and using example or
reference images with relevant content [Reinhard et al. 2001; An-
cuti et al. 2008; Dale et al. 2009; Joshi et al. 2010; Snavely et al.
2006]. Many of these applications benefit from the ability to de-
tect reliable correspondences between the input images. However,
as pointed out earlier, existing correspondence methods may often
find this task challenging.

For example, consider the task of color transfer from a reference
image in Figure 1a to a source image 1b, which differs in illumi-
nation, background, and subject pose. Our method is able to auto-
matically recover a set of dense correspondences between regions
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that appear in both images (1c), and adjusts the source such that the
result matches the tonal characteristics of the reference, as shown
in Figure 1e. Figure 2 demonstrates that existing alternatives are
not able to achieve a similar result on this image pair.

Our approach simultaneously recovers both a robust set of dense
correspondences between sufficiently similar regions in two images
(Figure 1c), and a global non-linear parametric color transformation
model (Figure 1d). We extend the Generalized PatchMatch algo-
rithm [Barnes et al. 2010] by making it robust to significant tonal
differences between the images, and embed it in a new coarse-to-
fine scheme, where the nearest-neighbor field computations are in-
terleaved with color transformation model fitting. At each stage,
we use aggregation of coherent regions and locally adaptive con-
straints to find regions within which the matches are consistent and
to reject outliers before the next stage commences. Such regions
are assumed to belong to content shared across the two images. In
summary, our correspondence method attempts to combine the best
of two worlds: It is dense, like optical flow and stereo reconstruc-
tion methods, and it is also robust to geometric and photometric
variations, like sparse feature matching.

After discussing relevant previous work (Section 2) and presenting
and evaluating our dense correspondence algorithm (Sections 3–4),
we discuss several example-based image enhancement applications
that benefit from our method (Section 5). Specifically, we first show
how to improve the global color transfer implicit in our approach to
produce a more locally-refined result. Next, we demonstrate the
applicability of our approach for example-based image deblurring,
and example-based mask transfer (foreground extraction).

2 Related Work

2.1 Correspondence

Initial correspondence methods were designed for stereo matching,
optical flow and image alignment [Lucas and Kanade 1981]. These
methods compute a dense correspondence field, but they are in-
tended to operate on very similar images, typically assume bright-
ness constancy and local motion, and tend to have errors in regions
that appear in only one image.

The development of various local invariant features [Lowe 2004;
Matas et al. 2002; Mikolajczyk et al. 2005] has brought about sig-
nificant progress in this area. These features are robust to typi-
cal appearance variations (illumination, blur, compression), and a
wide range of 3D transformations. Initial feature matching is of-
ten followed by geometric filtering steps (e.g., RANSAC using a
rigid scene assumption [Lowe 2004], and geometric consistency as-
sumptions [Cho et al. 2009]) that yield very reliable matches of 3D
rigid scenes [Snavely et al. 2006]. However they are still considered
less effective for matching non-rigid objects, people and scenes. In
these cases both the detectors and the descriptors are less effective,
and global rigid models cannot be generally applied. The Struc-
ture From Motion literature showed how sparse correspondences
can be found and grouped for non-rigid objects [Zelnik-Manor and
Irani 2006] (and references therein), however these methods are de-
signed for multiple video frames with small motions. In this pa-
per we show examples with significant non-rigidity and other ap-
pearance differences, where our dense correspondences work better
than sparse feature matches, as shown in Figure 2.

More advanced methods combine sparse features with dense match-
ing to cope with large-displacement optical flow [Brox et al. 2009],
and non-rigid matching of highly different scenes [Liu et al. 2008a].
Although both demonstrated impressive dense correspondence re-
sults, they are not robust to significantly changes in scale and ro-
tation. Our correspondence method is related to a family of meth-

[Pitié et al. 2007] SIFT Our result

Figure 2: Failure of other methods to correctly transfer color from
1a to 1b. The SIFT column uses our parametric color transfer
model, but recovered from a set of sparse SIFT correspondences.

ods that start with a few highly reliable feature matches, and then
“densify” the correspondence around those points to obtain reli-
able corresponding regions [Ferrari et al. 2004; Cho et al. 2008].
However, these methods were demonstrated on a collection of rigid
objects with very similar appearances. They were also applied on
very coarse grids of features, and do not seem to scale well to dense
pixel-to-pixel correspondences on large images. We show that our
method outperforms [Cho et al. 2008] in Section 4.

Our method builds upon Generalized PatchMatch (GPM) [Barnes
et al. 2010], a fast randomized algorithm for finding a dense nearest
neighbor field for patches that may undergo translations, rotations
and scale changes. We show that GPM performs poorly on our ex-
amples, but good results can be obtained by combining it with a
coarse-to-fine scheme, an iterative tonal and color correction of the
input image, aggregation of consistent regions, and locally narrow-
ing the search range of matched transformations.

2.2 Example-based enhancement

Over the years, there has been much work on the transfer of various
appearance-related image attributes from one image to another. An
and Pellacini [2010] provide a good survey of recent approaches.
Several methods attempt to modify a source image by globally
matching the color statistics of a reference image [Reinhard et al.
2001; Pitié et al. 2007]. Because the statistics of the entire source
image are matched to those of the entire reference, even common
content between two images may have widely varying appearance,
as shown in Figure 2 (left).

Later methods have attempted to overcome this problem by using
automatic co-segmentation and transferring color distributions be-
tween each pair of corresponding regions separately [Dale et al.
2009; Kagarlitsky et al. 2009]. However, such co-segmentation
methods require the example and input images to be similar. Image
alignment or optical flow algorithms can be used to overcome this
requirement for static or small-motion cases, but none of the afore-
mentioned works demonstrate results for more challenging cases.

The best color transfer results currently require user assistance, like
that of An and Pellacini [2010] (and the references therein). In
contrast, our approach provides an automatic solution for image
pairs with shared content.

As large personal and online photo collections are becoming com-
monly available [Snavely et al. 2006], and methods for correspon-
dence and recognition are becoming more mature and robust, new
methods are being developed that utilize content-specific examples.
For example, Liu et al. [2008b] and Dale et al. [2009] use global
descriptors to retrieve similar examples from large online collec-



Figure 3: The four steps of our correspondence algorithm - these are repeated several iterations at multiple scales.

tion. Liu et al. [2008b] use a pixel-by-pixel approach to colorize
grayscale images with edge-aware color propagation.

Other methods leverage common content in order to enhance im-
ages. Eisemann and Durand [2004] and Petschnigg et al. [2004]
transfer appearance between flash and no-flash image pairs. Joshi
et al. [2010] recognize recurrent faces in a personal photo collection
and use these faces for deblurring and correcting lighting and color
balance. Bhat et al. [2007] build a 3D model of the scene in order
to enhance videos of static scenes using example photographs, and
Eisemann et al. [2010] use SIFT correspondences to align static
scenes for addition of high-resolution details and white-balancing.

Our method significantly extends the operating range in which this
idea of using shared content to enhance images can be applied.
Rather than specifically relying on the presence of a common face
or a static scene, we provide a general method that robustly finds
shared content, including but not limited to faces, people, static and
non-static content.

3 Correspondence algorithm
Our goal is to find reliable dense correspondences between images
that share some content but may differ in several scene or camera
conditions. The dense region matching is non-parametric, align-
ing small patches transformed by simple geometric and photomet-
ric transformation to achieve robustness to such changes. We do
not assume a planar or rigid scene, so matches can be found across
significant changes of contents or pose. Jointly with region match-
ing, we recover a global parametric color transformation model that
combines per-channel nonlinear tone curves with a saturation ma-
trix for cross-channel adjustments. This parametric model can ex-
trapolate from the regions with known correspondence to other re-
gions where the correspondence is unknown.

To recover this image correspondence model, we propose a coarse-
to-fine algorithm that repeats the following four steps at each scale1:
nearest-neighbor search, region aggregation, color transform fitting,
and search range adjustment (Figure 3). First, for each patch in
the source image, find its nearest neighbor in the reference image,
searching over a constrained range of translations, scales, rotations,
gain and bias values (Section 3.1). Second, aggregate consistent re-
gions of matches (Section 3.2). Regions that pass a consistency
test are considered to be reliable matches. Third, robustly fit a
color transformation model based on these reliable consistent re-
gions (Section 3.3). And fourth, adjust the search range for each

1The factor between successive scales is
√

2, where the coarsest scale is
chosen such that the smaller dimension is above 64 pixels.

degree of freedom of the nearest neighbor patch search in the next
iteration (Section 3.4). This adjustment uses both the recovered
patch correspondences and the color model to estimate plausible
ranges for the color gain and bias. We repeat the coarse-to-fine pro-
cedure in two passes, in order to refine the model. See Algorithm 1
and Figure 3 for an overview of the algorithm.

Algorithm 1 Non-Rigid Dense Correspondence Algorithm

1: for scale = coarse to fine do
2: for each patch u ∈ S do
3: Find a transformation T u = argminT ‖Su − RT (u)‖2

(Sec. 3.1)
4: end for
5: Aggregate consistent matches to regions (Sec. 3.2)
6: Connect adjacent patches u,v if C(u,v)< τlocal (eq. 1)
7: Eliminate small regions
8: Eliminate regions for which C(Z)< τratio (eq. 2)
9: Fit and apply a global color transformation (Sec. 3.3)

10: (Optional) Estimate a blur kernel and deconvolve (Sec. 5)
11: Narrow search ranges (Sec. 3.4)
12: end for

3.1 Nearest-neighbor search

Given a source image S and a reference image R, we compute the
Nearest Neighbor Field from S to R, i.e., for each patch u ∈ S we
seek a transformation T u such that T u = argminT ‖Su −RT (u)‖2.
The transformation at each patch consists of translation, rotation,
uniform scale, and color bias and gain per channel. For the rest of
this paper we will denote these variables as Tx, Ty, Trotation, Tscale,
Tbias and Tgain respectively. These transformations can locally ap-
proximate more complicated global transformations such as differ-
ent pose, color curves, and more.

In contrast to other popular correspondence algorithms, we do not
store a large feature vector in memory for each patch. Instead, we
use small overlapping patches of eight by eight pixels, and a four-
dimensional feature vector per pixel, which includes the three chan-
nels of Lab color space and the magnitude of the luminance gradient
at each pixel.

Although optimizing such a high dimensional field may seem im-
practical, Barnes et al. [2010] show that the nearest neighbor
field can be efficiently found in the four dimensional space of
(Tx,Ty,Tscale,Trotation) using their Generalized PatchMatch algo-
rithm. We adopt this framework and extend it to support robust



color transformations and sub-pixel translation. We add eight addi-
tional dimensions for the gain and the bias of each of the four chan-
nels in our feature vector. However, unlike the geometric search
dimensions, there is no need to extend the randomized search strat-
egy over the color transformations: we obtain the optimal color
bias b and gain g between a patch and its candidate match analyt-
ically in O(1) using the mean µ and the variance σ2 of the pixels
in each patch by the following formula: g(u) = σ(Su)/σ(RT (u)),
b(u)= µ(Su)−g(u)µ(RT (u)). Note that T in this case contains only
the geometric part of the candidate transformation. Both the gain
and the bias are clipped to lie within the current search range limits.
We use Gaussian-weighted mean and variance around the center of
the patch, in order to make the patch statistics rotation-invariant.
They are precomputed and stored for each scale, and mipmaps are
used to obtain the mean and the variance at the exact scale (since
variance is not scale invariant).

3.2 Aggregating consistent regions

Although we cannot independently determine which matches are
unreliable, we can aggregate matches to improve robustness by get-
ting support from groups of matches. The likelihood that several
matches agree on the transformation parameters — producing a co-
herent block of matches by chance — is much lower than that of
any individual match to be in error [Lowe 2004; Cho et al. 2009].
We therefore apply a consistency criterion to calculate a coherence
error for a group of matches together and accept sufficiently large
regions if their coherence error is small.

Source Reference

T u

T u

T v

u

v
T u(vc)

T v(vc)

T u(uc)

We define adjacent patches
as consistent if their nearest-
neighbor field transformations
from the previous stage are
similar. More specifically,
consider a pair of patches
u,v∈ S with matched transfor-
mations T u,T v, and let vc denote the coordinates of the center of
patch v. If the two patches are matched consistently we expect the
distance between T v(vc) and T u(vc) to be small. However, for this
measure to be meaningful, the distance should be normalized (be-
cause the transformations T might involve a scale). This leads to
the following definition of the consistency error between u and v:

C(u,v) =
‖T v(vc)−T u(vc)‖2

‖T u(uc)−T u(vc)‖2
(1)

Using this consistency error, we compute the connected compo-
nents of the graph whose nodes are the patches in S, where each
patch u is connected to its neighbor v if v is one of its four neighbors
and if the consistency error is below a threshold: C(u,v)< τlocal .

Thus, we obtain regions where all adjacent patch pairs are consis-
tent, but pairs of patches further apart might not be. Our goal is
to identify regions where most patch pairs are consistent. To avoid
examining every pair of patches in a region Z we only consider a
random subset J(Z) of pairs2. To obtain this subset we only sample
from pairs (u,v) within a certain range τsmall < ‖uc− vc‖< τlarge.
We then define the coherence error of the region, C(Z), as the ratio
of the inconsistent pairs to the total number of pairs in J(Z):

C(Z) =
|{(u,v) ∈ J(Z) s.t. C(u,v)> τglobal}|

|J(Z)|
. (2)

2This sampling method assumes that the distribution of consistent pairs
in a region is well behaved. In practice we sample |J(Z)|=

√
|(Z)| pairs, so

the entire aggregation part is done in linear time.

Finally, we accept regions whose coherency error is below a thresh-
old τratio. Since in small regions there is greater likelihood of
the matches being coherent by chance, we exclude small regions
(regions for which |Z| < τsize). To produce the results shown in
this paper, we used τlocal = 3,τglobal = 0.8,τratio = 0.5,τsize =
500,τsmall = 8, and τlarge = 64.

We define the pixels in the eliminated regions as outliers, while re-
gions that have passed the above test are considered reliable and are
used to fit the global color transformation model, aligning the col-
ors of the source image with the reference, and to adjust the search
ranges for the next iterations, as described in the next section.

3.3 Global color mapping

Our global color transformation model serves two purposes: First,
to iteratively improve the performance of the correspondence algo-
rithm by narrowing the search range of the local patch transforma-
tion parameters, and second — in the context of color transfer — to
produce the final result, whose tonal characteristics should match
those of the reference. The color transformation is global since it is
used to map all of the colors in the source, and not only those where
a reliable correspondence has been established. It should be flexible
enough to capture and recover various color differences, while be-
ing conservative when only a small part of the color gamut appears
in the reliably matched regions. Simple adjustment of mean and
variance [Reinhard et al. 2001] cannot reproduce complex varia-
tions such as saturation and nonlinear tone curve adjustments, while
histogram matching and more sophisticated statistics-based meth-
ods [Pitié et al. 2007] might fail to produce a meaningful mapping
for colors that do not appear in the reliably matched regions at the
source image.

Hence we chose a parametric model that can be applied to predict
a reasonable mapping for colors that do not appear in the input cor-
respondences, that captures common global image adjustments and
discrepancies between different imaging devices, and that can be
stored in a meaningful and compact way for further manual adjust-
ments. Our algorithm fits three monotonic curves, one per channel
of the RGB color space, followed by a linear transform to accom-
modate saturation changes.

To model each of the curves we use a piecewise cubic spline with 7
breaks: two at the ends of the gamut range (i.e., zero and one), and 5
uniformly distributed along the subrange on the gamut populated by
reliable correspondences. Soft constraints are applied to the RGB
curves outside the color range with known correspondence, so that
they tend toward the identity transformation and for robustness to
outliers. We constrain each of the RGB curves to pass through the
points y(−0.1) = −0.1 and y(1.1) = 1.1 as well as impose hard
monotonicity y′(x) ≥ 0.1. Thus, we allow manipulations such as
gamma changes to be captured by the curve, while being conserva-
tive where we do not have enough data. We use quadratic program-
ming to solve for the curves’ degrees of freedom.

To handle saturation changes, that cannot be modeled solely by in-
dependent color channel curves, we use a matrix with one degree of
freedom: a uniform scale about the gray line. To compute the ma-
trix, we project pixel colors from both images along the gray line
(eliminating luminance variation) and optimize for the scale factor
s that best fits the corresponding chrominances alone. The resulting
matrix has the form: s−wr wg wb

wr s−wg wb
wr wg s−wb

 (3)

Since the gray model is generally unknown, we fit this equa-
tion twice for two common models: once with uniform weights



(wr,wg,wb) = (1,1,1)/3 and once using the YUV color space
(wr,wg,wb) = (0.2989,0.587,0.114) (other gray models are sim-
ilar) and choose the one that best minimizes the loss function.

3.4 Search constraints

By incorporating a separate color gain and bias for each patch, we
have introduced eight additional degrees of freedom. This increases
the ambiguity of each match, and thus there may be many low-
cost but incorrect matches. We overcome this problem by limit-
ing the search range of those transformations. Using the consis-
tency criterion (Section 3.2), we detect where the Nearest-Neighbor
search (Section 3.1) result is reliable, and iteratively narrow the
search range for these transformations around the transformations
that were found in the previous iteration.

At the initial coarse scale, the search ranges are constrained as
follows: Tx ∈ [0,Rw], Ty ∈ [0,Rh], Tscale ∈ [0.33,3], Trotation ∈
[−45,45], TLbias ∈ [−30,20], TLgain ∈ [0.2,3], TGgain ∈ [0.5,2], where
Rw and Rh are the width and height of the reference images. We
set TGbias = 0 as gradients typically change scale but not bias, and
Tagain ,Tbgain = 1 as we found that a bias change is sufficient to cap-
ture chromatic changes. At each subsequent scale, we adapt the
search range using the parameters of the matched transformation in
the reliable regions.

Since we do not assume only one global geometric transformation,
we change the search range of the geometric transformation locally,
and only inside the reliable regions: For each of the reliable matches
we constrain the search of the geometric parameters around its cur-
rent values using a radius of 4 pixels for the translations, 10 percent
for the scale, and 4 degrees for rotation.

Although a single consistent global color transformation does not
always exist, we assume that if we have enough reliable corre-
spondences, the range of their gain and the bias correspondences,
combined with the global color correction, can capture the gain
and bias that are required for the rest of the image. Hence, we
calculate (TLbias ,Tabias ,Tbbias ,TLgain and TGgain ) of each of the reli-
able matches with respect to the color corrected image, and set
the set a global search range for the color parameters to be Tx ∈[

min
T u∈Q(S)

(T u
x ), max

T u∈Q(S)
(T u

x )

]
where Q(S) are the reliable matches

and Tx is each of the color parameters. If the total area of the reli-
able regions is less than one percent of the source image size , we
use the initial search range and no global color correction.

4 Evaluation

We extensively tested our approach on a large number of challeng-
ing pairs of images with shared content. One coarse-to-fine sweep
of our basic algorithm (Alg. 1) on a 640× 480 pixel image takes
between 4 and 9 seconds on a 2.3GHz Intel Core i7 (2820qm) Mac-
Book Pro (using our MATLAB/C++ implementation). The exact
time depends on the interpolation method used for scaling patches
from a mipmap data structure, and the exact number of GPM itera-
tions we use. For many image pairs, a single sweep of the algorithm
suffices. Furthermore, since the algorithm operates in a coarse-to-
fine fashion and updates the global color transfer parameters after
each iteration, we found that in most cases we obtain a very good
estimate of the transfer model already at the second coarsest scale,
produced after only 0.9 seconds. Thus, in the context of a color
transfer application, a user would see almost immediate feedback
of the estimated result. In more challenging cases we found that
a second sweep with updated color may improve the correspon-
dences, though the improvement of the global color transform is
minor.

4.1 Correspondence evaluation

We compared our method with existing state-of-the-art dense cor-
respondence methods: SIFT-Flow [Liu et al. 2008a] and General-
ized PatchMatch (GPM), as well as with sparse SIFT correspon-
dence [Lowe 2004]. To make a balanced comparison to GPM we
used our extended implementation with 20 iterations at only the
finest scale, without aggregation or narrowing the search regions
(i.e., as described by Barnes et al. [2010]), but with the same four
channels used by our method and with color bias and gain con-
strained to our initial search ranges. For sparse SIFT correspon-
dence, we used circular regions with a radius of 15 pixels around
the descriptor centers in the source image, and their matched circu-
lar regions in the target image, to obtain a dense correspondence in
those regions. For SIFT-Flow we used the default parameter values
suggested by the authors using their code.

(a) Inputs (b) SIFT (c) GPM (d) Our

Figure 4: Qualitative comparison of matches on real-world scenes:
(b) sparse SIFT features, (c) Generalized PatchMatch, and (d) our
method. The unmatched regions are faded. For GPM we used our
consistency criterion to eliminate outliers. For SIFT we used circu-
lar regions with a radius of 15 pixels around the descriptor centers
in the source image (first and third rows), and their matched circu-
lar regions in the target image (second and forth rows), to obtain a
dense correspondence in those regions. Note that SIFT incorrectly
matched regions that appear in only one of the images, and that
GPM has much fewer matched pixels than our method.

Figure 4 shows a visual comparison between our method, sparse
SIFT, and GPM on two pairs of real-world scenes. SIFT feature
matches are typically very sparse and contain many errors that can-
not be filtered easily in presence of non-rigidly moving people. For
GPM we show here only large consistent regions as detected by our
aggregation method. Our method typically captures much larger
and more reliable matches than the other methods.

In addition to these qualitative visual comparisons, we evaluated the
accuracy of our correspondence quantitatively. Since ground truth
data for real scenes of this kind is scarce, we turned to a standard
data set by [Mikolajczyk et al. 2005] that has been used for evalu-
ating sparse feature based correspondence algorithms. It contains
significant planar geometric transformations as well differences in
sharpness, exposure and JPEG compression. Since it is known that
SIFT descriptors (thus also SIFT-Flow) are robust to the latter ap-
pearance changes, we focused our comparison on large geometric
deformations. Therefore we picked all subsets of pairs that have
geometric deformations (the two subsets named “zoom+rotation”
and the two named “viewpoint”). To accommodate these extreme



(a) Inputs (b) SIFT (c) SIFT- (d) GPM (e) Our
Flow

Figure 5: Correspondence evaluation: two examples from the
dataset of Mikolajczyk et al. [2005] comparing matches recovered
using sparse SIFT features (b), Generalized PatchMatch (c), SIFT-
Flow (d), and our results (e). We highlight only regions of matches
that fall within a radius of 15 pixels from the ground-truth. See
more details in text.

geometric deformations we extended the initial scale and rotation
ranges in our method to Tscale ∈ [0.2,5], Trotation ∈ [−190,190].

Common metrics for evaluating sparse features on this dataset do
not apply to dense methods. Therefore, we adopted the metric used
by [Liu et al. 2008a]. For each pixel in the first image, its match
is considered correct if it falls within distance r from the ground
truth location in the second image. We plotted the percent of cor-
rect matches relative to total number of input pixel with matches,
as a function of r (average over all pairs in the dataset) in the graph
on the right. For sparse SIFT matches we counted the pixels out-
side the circular descriptor regions as “incorrect”. Figure 5 shows a
comparison to the other methods on one “viewpoint” pair (top) and
one “zoom+rotation” (bottom). In this figure we highlight correct
matches that correspond to r = 15.
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Our method outperforms the other
methods on these subsets, as may
be seen in the inset graph. Al-
though GPM can handle differ-
ences in scale and rotation, it per-
forms poorly on these pairs as
it finds local independent nearest-
neighbor matches on a single scale
and does not try to explicitly cap-
ture consistent corresponding re-
gions or account for any other
global considerations. SIFT-Flow
can handle some geometric deformations but not extreme scale and
rotation differences. Note also that sparse features (like SIFT) can
handle these kind of geometric deformations, but they are sparse
and thus do not score high using the metric we use. Although pla-
nar transformations with little appearance changes do not reveal the
full potential of our method, this dataset demonstrates the advan-
tage of our dense correspondence algorithm in dealing with realistic
transformations.

We also compared our method with the Co-recognition approach
of Cho et al. [2008], who demonstrated impressive reliable region
correspondence results, outperforming previous similar methods in
many cases. We used their challenging dataset and their mea-

(a) Inputs (b) Co-recognition (c) Our

Figure 6: Comparison to Co-recognition [Cho et al. 2008] using
an example from their dataset.

sure for hit-ratio hr and background ratio br
3. Note that their

measure quantifies coverage of the common regions as opposed
to pixel-wise correspondence accuracy as reported in the previ-
ous experiment. Our method performs well on this dataset with
[hr,br] = [65.7%,4.9%] on average. Note that our method is tuned
for high reliability of the reported consistent regions, thus the low
br (false-alarm rate). In order to compare the two methods for
the same value of br = 22.4% as their method produces, we used
simple dilation of 12 pixels on our results and got a slightly bet-
ter hr value of 86.9% on average (compared to their 85.5%). An
example from this dataset is shown in Fig. 6. Our method often
captures more accurate object boundaries, and is also likely to be
more accurate inside the objects, as we compute correspondences
at the original image resolution rather than on a very coarse grid in
their method. Moreover, their dataset consists only of rigid objects
and scenes with almost no differences in appearance, whereas our
method works in a much wider operating range.

4.2 Global color transfer evaluation

Given a reference and source image pair with shared content, one
may use the global parametric color transformation model we re-
cover to automatically adjust the color and exposure of the source
image to match the reference. A number of representative results
are shown in Figure 7. In contrast, the statistical color transfer
method of Pitié et al. [2007] produces poor results when the two im-
ages have different color statistics in the non-overlapping regions.

We also compared our color transfer results with color transfer
based on sparse SIFT correspondences [Lowe 2004]: To perform
color transfer with SIFT we fit the same global color model as de-
scribed in Section 3.3, but rather than fitting it to our reliable corre-
spondences we use circular regions centered at the matching SIFT
features, where the size of each region is determined by the scale
of the corresponding SIFT feature. Figure 2 shows a challenging
example pair where SIFT matching fails to produce an acceptable
color transfer result. The reason is that, as previously noted, SIFT
tends to miss many smooth non-rigid regions, and has a high false
positive rate that overwhelms our parametric color transfer model.
The reader is referred to the project webpage for additional com-
parisons with SIFT-based color transfer.

4.3 Limitations

Our experiments did reveal that our approach has a few limitations.
One limitation is that it has difficulty finding reliable correspon-
dences in very large smooth regions, such as clear sky. Due to the

3hr =
|GroundTruth∩Result|
|GroundTruth| , br =

|Result|−|Result∩GroundTruth|
|Result|
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Figure 7: Automatic color transfer: comparison to the state-of-
the-art method of Pitié et al. [2007].

use of fixed-size patches, if an object appears over a different back-
ground in the two input images, the algorithm cannot extend the
matching regions all the way to the object’s boundaries. A third
limitation is that our single global color model cannot handle cases
where there are actually two or more very different color models:
we find correspondences for only one. This situation might arise
under strong lighting changes, or due to local user edits. Also, our
global color model only handles one kind of cross-channel transfor-
mation: saturation/desaturation. Although this is the most common
such transformation, it will not handle less frequent cases like hue
rotations, or manipulations used to emulate chemical film develop-
ment processes. A possible solution might be running the algorithm
several times with different but narrower initial search ranges and
aggregate the reliable matches from each pass.

5 Applications
Local color transfer

Our global parametric color transfer model produces satisfactory
results in many cases. However, there are also cases where global
exposure and color corrections do not produce a satisfactory re-
sult. This can occur if the lighting and shadows in the scene are
too different (middle row in Figure 8), if the reference image has
undergone local editing by the user after it was captured, or if there
is a global transformation but it is not one of the common trans-
formations that our model is designed to recover. In such cases, a
global color transfer followed by a further local adjustment using
our correspondences can yield a more satisfactory result.

We perform the local adjustment as follows: We first locally ad-
just the colors inside the reliable correspondence regions, and then
propagate the change from the boundaries of these regions to the
rest of the image using Poisson blending [Pérez et al. 2003].

The local adjustment inside the well-matched regions is done using
locally adaptive histogram matching, a variant on the locally adap-
tive histogram equalization algorithm [Pizer et al. 1987]: the orig-
inal algorithm subdivides the image to blocks, calculates a trans-
fer function (originally histogram equalization) and smoothly in-
terpolates the result. Since we already have a set of pixel-to-pixel
correspondences between the source and the reference, we can re-
place the histogram equalization with histogram matching to locally
match the color of each block centered at a matched pixel with the
corresponding block in the reference image.

The added value of the resulting local adjustment is demonstrated
in Figure 8. For example, it succeeds in improving the flesh tones in
the top and bottom rows, and assigns a more accurate darker shade
of green to the vegetation in the middle row. The corresponding
regions on the source image are shown in column (c).

Deblurring

Deblurring by example has been demonstrated by Joshi et al. [2010]
using recurrent faces, and by Ancuti et al. [2008] using static back-
grounds aligned with SIFT correspondences. [Yuan et al. 2007]
deblurred blurry images using noisy (aligned) examples. When a
sharp example is given and there is no further data about the cap-
turing devices, the first step is to estimate the blur kernel using an
accurate pixel (or better, sub-pixel) alignment between the blurred
pixels and the corresponding sharp ones. However we found that
when the blur kernel is large, it is hard to obtain an accurate enough
correspondence. Therefore we interleave the kernel estimation and
deconvolution steps in the inner loop of our correspondence algo-
rithm (Step 10 in Algorithm 1). The effective kernel at the coarsest
resolution is usually small and can be effectively computed from
the correspondences at that scale, which are further improved after
each deconvolution. The kernel is then upsampled when moving
to the next scale, to produce a sharper deconvolved initial source
image. This process continues till the finest scale to obtain our final
kernel and deconvolved image.

We modified the kernel estimation method of Cho and Lee [2009]
to use a “validity” mask in addition to the “sharp” and “blurry” im-
ages as inputs. The estimation is done only for pixels inside the
validity mask. In our case, the blurry input is the source image af-
ter matching its colors to the reference, and we synthesize a sharp
image by assigning colors in the consistent regions of the source im-
age using the corresponding reference locations. We call this image
the “reconstructed” source and the validity mask marks the consis-
tent pixels in it. The kernel estimation process is then followed by
sparse deconvolution [Levin et al. 2007].

Accurate and dense alignment is crucial for the success of the de-
blurring process. Therefore, this application is an interesting test
case for the quality of our correspondence method. We compare our
results with the state-of-the-art blind deconvolution methods of Cho
and Lee [2009] and of Levin et al. [2011]. To isolate the influence
of the estimated kernel, we applied the same deconvolution method
of [Levin et al. 2007] with same regularization weight (10−4) using
the estimated kernel by each method. Two examples are shown in
Figure 9, where our method managed to deblur challenging images
that violate the general assumptions of the blind methods.

Mask transfer

Many image editing tasks require first selecting a local region on an
image, by creating either a hard mask or a soft matte, and then using
this mask to locally edit (or to cut out or copy) that region. Cre-
ating masks by hand is tedious, and various interactive techniques
have been devised to simplify this task (e.g., [Rother et al. 2004]).
Cosegmentation [Rother et al. 2006] methods try to automatically
segment the same object from two different images, assuming sim-
ilarity between the object histograms and dissimilarity between the
histograms of the backgrounds. Here, we assume we are given a
mask that has already been created for an object in one of the im-
ages, and we wish to transfer this mask to the same object in another
image. This is similar to video segmentation by propagation [Bai
et al. 2009], in which a segmentation is provided for one frame, and
the task is to propagate it to the rest of the video. Our problem is
in some aspects more challenging, because of the large differences
between images that we must handle, relative to the small frame-
to-frame variations typical in video.
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Figure 8: Global vs. local color transfer: (a) Reference; (b) Source; (c) Matching regions in the source reconstructed from the reference; (d)
Global color transfer result; (e) Local refinement of the global transfer result;

(a) Sharp example (b) Blurry (c) [Cho and Lee 2009] (d) [Levin et al. 2011] (e) Our

Figure 9: Comparison with blind-deconvolution methods: A sharp reference image (a) and a blurry image (b) are given. We applied the
deconvolution of Levin et al. [2007] with the same parameter values and each of the kernels estimated by the blind-deconvolution methods of
Cho and Lee [2009] (c), and of Levin et al. [2011] (d), and the kernel we estimated using the dense correspondence to the sharp image.

(a) Reference (b) Input mask (c) Source (d) Trimap (e) Output mask

Figure 10: Mask transfer: A binary mask is given (b) on the reference image (a). The goal is to transfer this mask to the source image
(c). The mask and its complement are transferred to (c) using our dense correspondences, resulting in a trimap (d). Low confidence matches
result in the unknown (gray) regions. A final mask (e) is computed using GrabCut with the trimap as its input.

Our method is very simple: Given a mask for the reference im-
age (Fig. 10(b)), first find all the consistent corresponding regions
between the two images, then mark the pixels in the input image
(Fig. 10(c)) that correspond to the masked pixels in the reference
as “known object” pixels. Do the same for the complement of the
masked pixels and mark them as “known background”. The rest

of the pixels are marked as “unknown”. These regions are shown
as white, black and gray respectively in Fig. 10(d). We slightly
erode the “known” regions to avoid crosstalk, and use them as
foreground/background initialization for segmentation using Grab-
Cut [Rother et al. 2004]. Two results are shown in Fig. 10(e).



6 Summary
We have demonstrated a new correspondence method that com-
bines dense local matching with robustness to outliers. This com-
bination makes it possible to identify correspondences even in non-
rigid objects with significant variance in their appearance charac-
teristics, including dramatically different pose, lighting, viewpoint
and sharpness. We showed that our method outperforms previous
methods, which find this task challenging.

We have shown that our method is widely applicable for color trans-
fer in real-world images, as well as additional transfer challenges
such as deblurring and mask transfer. We believe this method may
also prove useful for a variety of computer graphics and vision ap-
plications that currently rely on previous correspondence methods.
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