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Abstract

Edge-aware operations, such as edge-preserving smoothing and
edge-aware interpolation, require assessing the degree of similar-
ity between pairs of pixels, typically defined as a simple monotonic
function of the Euclidean distance between pixel values in some
feature space. In this work we introduce the idea of replacing these
Euclidean distances with diffusion distances, which better account
for the global distribution of pixels in their feature space. These
distances are approximated using diffusion maps: a set of the dom-
inant eigenvectors of a large affinity matrix, which may be com-
puted efficiently by sampling a small number of matrix columns
(the Nystrom method). We demonstrate the benefits of using dif-
fusion distances in a variety of image editing contexts, and explore
the use of diffusion maps as a tool for facilitating the creation of
complex selection masks. Finally, we present a new analysis that
establishes a connection between the spatial interaction range be-
tween two pixels, and the number of samples necessary for accurate
Nystrom approximations.

Keywords: diffusion maps, edge-preserving smoothing, edge-
aware interpolation, edit propagation, Nystrom method

1 Introduction

Edge-aware operations, such as edge-preserving smoothing and
edge-aware interpolation have recently emerged as useful tools for
a variety of image editing and manipulation tasks: edge-preserving
smoothing operators are widely used to extract and/or remove de-
tails from an image, e.g., [Chen et al. 2007; Farbman et al. 2008;
Subr et al. 2009]; edge-aware interpolation makes it possible to
propagate a set of sparse user-specified constraints (edits) in an in-
tuitive manner by accounting for strong edges in the image, e.g.,
[Levin et al. 2004; Lischinski et al. 2006; Yatziv and Sapiro 2006;
Li et al. 2008].

Most edge-aware interpolation approaches are based on local prop-
agation of sparse user constraints. They use affinities between adja-
cent pixels to formulate and solve an optimization problem [Levin
et al. 2004], or to perform blending using intrinsic (geodesic) dis-
tances [Yatziv and Sapiro 2006]. While such approaches provide
the user with good local control, they have difficulty propagating
sparse edits across strongly textured regions (Figure 1, top row),
and can’t handle fragmented regions. Several solutions have been
recently proposed to address these issues. In particular, the global
all-pairs approach [An and Pellacini 2008] was demonstrated to be
well-suited for propagating sparse (and possibly rough) user edits
to large spatial neighborhoods. We discuss all these approaches in
more detail in the next section.

In this work we improve the performance of existing edge-aware
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Figure 1: Color editing using local edit propagation. Top row:
input, influence mask for the white scribble (using Lischinski et al.
[2006]), and the corresponding result. Middle row: three leading
eigenvectors of the diffusion map. Bottom row: masks produced
using diffusion distances with different values of t, and final result.

methods and extend them in several respects. We observe that
some of the difficulties encountered by existing local propagation
methods stem from the fact that the affinities they use are typically
given by a simple monotonic function of the Euclidean distance be-
tween the low-level feature vectors associated with each pixel. This
measure of similarity does not account for any higher level struc-
ture, which becomes apparent when one examines the distribution
of pixel values in their feature space. We propose to address this
shortcoming, and provide pairwise affinities with the missing global
perspective, by leveraging the concept of diffusion distances, which
has recently emerged in the spectral clustering literature [Coifman
and Lafon 2006].

In natural images, where the number of distinct homogeneous re-
gions is typically much smaller than the number of pixels, diffusion
distances may be effectively approximated using a small number
of diffusion maps: the eigenvectors of the pairwise affinities matrix
(Figure 1, middle row). These maps, described in more detail in
Section 3, also make it easy to compute diffusion distances corre-
sponding to different times, providing an important parameter with
which the user can control the desired amount of propagation (Fig-
ure 1, bottom row).

In Section 4, we explore the benefits of using diffusion distances
in a variety of edge-aware image editing contexts, and also demon-
strate that diffusion maps facilitate the creation of complex edge-
aware selection masks in images containing textured regions with
fuzzy and/or fragmented appearance.

Diffusion maps may be effectively approximated using a Nystrom
method [Fowlkes et al. 2004]. This approach involves sampling a
small number of columns of the (low rank) affinity matrix. A simi-
lar approximation was used by An and Pellacini [2008] in order to
solve the associated dense linear system that arises in their all-pairs



approach. However, limiting the spatial range of permitted inter-
actions between pixels raises the rank of the affinity matrix, and
renders the approximation less accurate. In Section 5 we refine the
analysis of An and Pellacini to obtain a more accurate estimate of
the rank of the affinity matrix, as a function of the maximum dis-
tance in the image at which pixels are allowed to interact directly.
The refined analysis enables one to determine the appropriate num-
ber of matrix columns to sample, in order to guarantee an accurate
Nystrom approximation. Our analysis also shows that even with
the increased sampling rates, the resulting matrices are sparse and
thus can be solved efficiently using standard sparse linear solvers.
This makes it possible to perform edge-aware image editing with
an arbitrary permitted interaction range.

2 Previous Work

Edge-aware interpolation. A number of techniques for edge-
aware interpolation have been recently explored. Levin et al. [2004]
introduced an optimization framework for colorizing grayscale
images by propagation from a set of sparse user-provided con-
straints. This approach was generalized to other tonal manipula-
tions [Lischinski et al. 2006], as well as to natural image matting
[Levin et al. 2008a]. Yatziv and Sapiro [2006] propagate similar
constraints by intrinsic (geodesic) distance based blending. All of
the techniques above rely on gradients between adjacent pixels to
control propagation, and thus have trouble propagating information
in highly textured regions, as well as preventing propagation across
low-contrast edges. Handling fragmented (disconnected) regions is
another problem, since they might require many constraints to be
provided by the user.

An and Pellacini [2008] generalized optimization-based edit prop-
agation to consider interactions between all pairs of pixels in the
image, enabling less precise specification of user constraints and
their propagation across disconnected regions. This approach re-
sults in a large dense affinity matrix, but this matrix is approxi-
mately low-rank, and can be approximated by sampling just a small
number of columns (Nystrom method) [Williams and Seeger 2000].
Xu et al. [2009] have recently proposed to accelerate the all-pairs
approach further by computing the propagation between pairs of
clusters in feature space, rather than between pairs of pixels.

An and Pellacini’s error analysis shows that the Nystrom approxi-
mation becomes less accurate as the spatial range of the interactions
is decreased. However, since their goal is to enable edit propaga-
tion to rather large spatial neighborhood, they were able to achieve
satisfactory results using a constant number of samples (100). In
our work we also apply the Nystrom method to a related eigenvalue
problem [Fowlkes et al. 2004], and present a refined error analy-
sis that more precisely quantifies the effective rank of the affinity
matrix as a function of the spatial interaction range, enabling us
to generalize the all-pairs approach to handle arbitrary interaction
ranges accurately and efficiently.

ScribbleBoost [Li et al. 2008] is another approach that improves
propagation across textured or fragmented regions. The user’s
scribbles are used to perform supervised classification of the pixels,
and the results are introduced into the optimization as additional
soft constraints. A selection mask is then computed by solving the
linear system once for each scribble type. While our idea of us-
ing diffusion distances also leverages machine learning techniques,
we effectively perform unsupervised clustering, which considers all
of the data in the image, rather than just the pixels covered by a
particular set of strokes. Furthermore, the resulting diffusion dis-
tances are useful in such applications as edge-preserving smooth-
ing, where no user input is available.

Edge-preserving smoothing. Edge-preserving smoothing is
used in a wide variety of computational photography applications
[Farbman et al. 2008]. Popular edge-preserving smoothing filters

include the bilateral filter [Tomasi and Manduchi 1998], for which
a number of efficient implementations have been proposed [Durand
and Dorsey 2002; Paris and Durand 2006; Chen et al. 2007]. Fat-
tal [2007] explored a fast iterative multiscale variant of the bilateral
filter, while Farbman et al. [2008] advocated the use of weighted
least squares optimization instead. Recently, Fattal [2009] intro-
duced edge-avoiding wavelets, and demonstrated their usefulness
for very fast edge-preserving smoothing, as well as for edge-aware
editing. These techniques can also be applied to edit propagation,
via interactive painting with edge-aware brushes [Chen et al. 2007],
or by fast edge-aware pushing and pulling of the sparse constraints
[Fattal 2009].

All of the techniques mentioned above rely on the difference be-
tween pixel values (difference in luminance, or Euclidean distance
in some color space). Thus, we argue that they could all benefit
from using diffusion distances instead, and support our claim by a
number of examples in Section 4.

Anisotropic diffusion [Perona and Malik 1990; Black et al. 1998] is
another popular approach for edge-preserving smoothing via non-
linear PDE-based filtering. Although our work employes similar
terminology (i.e., diffusion and time), our focus is on the unsu-
pervised preconditioning of the data, independent of a particular
smoothing or propagation scheme. Although not explored in this
paper, one could conceivably use the resulting diffusion distances
in the computation of the edge-stopping term of various anisotropic
diffusion schemes.

Subr et al. [2009] have recently proposed an edge-preserving
smoothing approach based on identifying and fitting envelopes to
local extrema in the image. This approach effectively assumes an
oscillatory model of textured regions, and succeeds in removing de-
tail even in high-contrast textured regions. While our approach does
not make use of such a texture model, we show that by plugging
diffusion distances into an existing edge-preserving smoothing ap-
proach it becomes possible to remove detail just as effectively. The
scale of the details to be removed may be controlled via the time
parameter, which is built into the diffusion distances that we use.

Clustering. Diffusion maps have emerged in the machine learn-
ing community as a tool for dimensionality reduction and unsu-
pervised clustering [Coifman and Lafon 2006; Nadler et al. 2005;
Singer et al. 2009]. This tool belongs to a larger family of spectral
clustering techniques, which includes other closely related meth-
ods, such as locally-linear embeddings (LLE) [Roweis and Saul
2000], Isomaps [Tenenbaum et al. 2000], and Laplacian eigenmaps
[Belkin and Niyogi 2003]. In particular, spectral clustering methods
have been used to perform hard (binary) segmentation [Shi and Ma-
lik 1997; Weiss 1999] by thresholding the eigenvectors of suitably
formed matrices. Meila and Shi [2001] pointed out the connec-
tion between these methods and Markov random walks. Diffusion
distances also have a random walker interpretation (Section 3.1).
However, in contrast to these methods, we are not interested in hard
segmentation, but rather in deriving new distances to assist in edge-
aware interpolation and smoothing.

The use of random walks for segmentation was also explored by
Grady [2006]. His formulation yields a linear system defined by
an inhomogeneous Laplacian matrix, similar to the ones that arise
in optimization-based edit propagation. Recently Grady suggested
to accelerate his segmentation approach by precomputing a small
number (40-80) of eigenvectors [Grady and Sinop 2008]. How-
ever, since his random walker formulation considers only limited
spatial neighborhoods, our analysis in Section 5 implies that such
an approximation is only accurate for small images.

Spectral clustering has also been used for natural image matting
[Levin et al. 2008b], where the eigenvectors of a suitable Laplacian
matrix are rotated and combined together to yield a soft matte. We



also compute eigenvectors, but use them in order to define robust
distances between pairs of image pixels.

Another family of relevant works from the computer vision liter-
ature are path-based clustering methods, which examine the dis-
tribution of the data in some (typically high-dimensional) feature
space, e.g., [Fischer and Buhmann 2003; Chang and Yeung 2008].
In particular, Omer and Werman [2006] measure the affinity be-
tween pixels in terms of the length and the density of the paths
connecting them in color space. All of these methods, however,
are very costly to compute. Diffusion distances also account for
length and density of paths in the data, but lend themselves to faster
computation. In addition, diffusion maps have a built-in notion of
time, which makes it possible to control the granularity (scale) of
the clusters in an efficient and intuitive manner.

3 Diffusion Maps

In this section we present our approach towards edge-aware image
editing, which is based on the use of diffusion distances in place of
the distances typically used by existing edge-aware methods.

Existing edge-aware methods rely on a pairwise similarity (affinity)
measure between image pixels. The affinities used in practice are
typically a monotonic function of the distance between the pixels
in some simple feature space, for example:

k(xi,x;) = exp(—|lx; — xj|/267), 1)

where x; is the feature vector associated with the i-th pixel, e.g., its
luminance or log-luminance, its coordinates in some color space,
or a concatenation of color and spatial coordinates. Intuitively, the
affinity between two pixels predicts the likelihood that both pixels
belong to the same surface/region in the image. Edge-preserving
smoothing techniques allow groups of pixels with high affinities
between them to be averaged together, and edge-aware editing sys-
tems allow edits to propagate between pairs of pixels with high
affinity.

Thus, existing edge-aware methods are driven by the Euclidean dis-
tances between feature vectors corresponding to the pixels in the
image. The shortcomings of this approach are that it might (i) fail
to distinguish between regions separated by a low contrast edge;
and (ii) fail to cluster together pixels in highly textured regions,
which may exhibit strong differences between nearby pixels.

While it is possible to discriminate between textures by augment-
ing the feature vectors with texture descriptors such as responses to
Gabor filter banks [Turner 1986] or histograms of such responses
[Malik et al. 2001], these descriptors aggregate information from a
fairly large window around each pixel, and thus effectively operate
at a lower spatial resolution.

We argue that pairwise distances among the data points provide
only partial (and sometimes misleading) information about the
manner in which pixels should be clustered. Additional highly rel-
evant information may be obtained by examining the actual dis-
tribution of the data in the feature space. Consider, for example,
the image shown in Figure 2. The distribution of the pixel col-
ors in this image is highly non-uniform, and clearly exhibits three
distinct clusters corresponding to the blue sky region, the red flow-
ers, and the green grass. While the pairwise distances in the color
space between the red and the green pixels are of the same order
of magnitude as those between red and blue (or green and blue),
the distribution reveals that the transition between the red and the
green clusters is much more densely populated than the red-blue or
green-blue transitions. This corresponds to our intuition that in the
coarsest possible clustering of this image the green and red should
go into one cluster, while the blue into another.

Thus, we would like pixel affinities to account for the actual distri-
bution of the data in the feature space. Intuitively, the likelihood of

two data points to belong to the same cluster should depend on the
lengths and the density of the different paths between them. This
may be achieved by replacing the Euclidean distances with diffusion
distances, a concept that was recently proposed for dimensionality
reduction and clustering [Coifman and Lafon 2006; Nadler et al.
2005], which we describe in more detail below.

3.1 Diffusion distances and diffusion maps

Definitions. Given a set of n data points, xp,...,x, in some feature
space, we define a pairwise affinity matrix W, where
Wi j = k(xi,x;) @)

for some affinity function k(-,-). Let D be a diagonal normalization
matrix D;; = }.; W, j. The normalized matrix M = D~ 1w can be
interpreted as a stochastic matrix, where M; ; is the probability of a
random walker located at point x; to transition to point x; in a single
time step. Consequently, M’ consists of the probabilities to move
from each point to another in ¢ time steps. Informally, for each ¢,
we can associate M’ with a “soft” clustering of the data points: a
subset of points is considered a cluster if there is a low probability
of a random walker starting from a points in this subset to end up
outside it after + moves. In general, these clusters tend to become
coarser as ¢ increases.

Diffusion distance. There is an interesting relationship between the
geometry of the data and the spectral properties of M, captured by
the notion of diffusion distances [Nadler et al. 2005]. The diffusion
distance Z; (x;,x;) is defined as difference between the probabilities
that a random walker starting at each of these two points will end
up in the same position at time ¢. Formally,

Y (p(t,21x) = p(t,2ly) > w(z), 3)

Z

D} (x,y) =

where p(t,z|x) is the probability of a random walker to transition
from x to z in ¢ time steps, and w(z) is the reciprocal of the local
density at z. Intuitively, the more short paths connect two points, the
smaller the diffusion distance between them. Note that (3) defines
a family of diffusion distances parameterized by the time 7. As ¢
increases, two points that were originally distant from each other
may grow closer.

Diffusion map. It may be shown that M has a set of n real eigen-

values {li}g_l. Furthermore, if all the points are connected (i.e.,
there is a path of non-zero probability between any two points),
then M has a unique eigenvalue equal to 1, and the other eigen-
values form a non-increasing sequence of non-negative numbers:
Ao=1>A>A>--->2A,_1 >0. Denoting by vy, ..., ;| the
corresponding right eigenvectors of M, the diffusion map at time ¢
is defined as a mapping between the original data points and the
eigenvectors (each scaled by its corresponding eigenvalue):

¥ () = (A (), 59 (x), . Ay 1 (1)) - )

Note that the eigenvector Y does not participate in the diffusion
map, since it is constant and thus does not contribute any discrimi-
nating information.

As shown by Nadler et al. [2005], the diffusion distances at time ¢
may be expressed simply as Euclidean distances in the correspond-
ing diffusion map:

Di(x,y) = HLP,(x)—‘P[(y)||2. ©)

In other words, the diffusion distance between two points is simply
the sum of squared differences between the corresponding entries
of the eigenvectors ;, where each eigenvector is weighted by A/.

In practice, the matrix M often exhibits a spectral gap, i.e., only
a few of its eigenvalues are close to one, while the rest are much
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Figure 2: Left: highly non-uniform distribution of pixel colors in an image. Middle: the three leading eigenvectors of the normalized pairwise
affinity matrix reveal the dominant clusters. Right: gradients computed using diffusion distances at different times.

smaller. Thus, the diffusion distance is well approximated by a dif-
fusion map constructed from the first £ eigenvectors, with the accu-
racy of the approximation increasing with the time . As discussed
in Section 5, the value of k depends on the spatial support of the
affinity kernel.

Example. Figure 2 shows a visualization of the first three eigenvec-
tors produced from the input image. Note that the first eigenvector
y; roughly clusters the image into two main regions (correspond-
ing to sky and ground), y, mainly distinguishes the red flowers
from everything else, while y3 sets apart the white clouds from ev-
erything else. The next eigenvectors (not shown), corresponding to
smaller eigenvalues further separate between progressively smaller
regions in the image. Since all eigenvalues are strictly smaller than
1, increasing the value of the time parameter ¢ gives more weight to
the “coarser” eigenvectors. Thus, diffusion distances correspond-
ing to higher values of r emphasize edges separating between the
coarser clusters, while suppressing those that separate smaller scale
image regions. In the Section 4 we demonstrate the usefulness of
diffusion distances by plugging them in place of regular pairwise
distances in several edge-aware operations.

3.2 Efficient implementation

A possible concern regarding the use of diffusion distances in prac-
tice is the added computational cost. Specifically, a naive imple-
mentation would involve forming the all-pairs normalized affinity
matrix M = D~'W and then computing the leading eigenvalues and
eigenvectors of this matrix in order to form the diffusion maps. This
is impractical for working with high-resolution images. In order to
make the approach practical we use the approximation proposed by
Fowlkes et al. [2004], which is based on the Nystrom method.

The Nystrom approximation method proceeds as follows. Given

an image with N pixels, distribute a small number m of samples
across the image. Next, compute two matrices: an m X m matrix A,
which consists of the pairwise affinities among the m samples, and
an (N —m) x m matrix B, of the affinities between these samples and
the rest of the image. This corresponds to partitioning the complete
N x N affinity matrix W as:

T
w3 %)

Note that the block C, which contains the bulk of the pairwise affini-

ties is never actually computed. The approximate eigenvectors V of
W are then given as

. v
V:[BVA—1 } @

where V are the eigenvectors of A, and A is the corresponding di-
agonal eigenvalue matrix. Intuitively, we compute the eigenvalues
and eigenvectors of the sampled matrix A, and use B to “upsample”
these vectors to the full resolution of the original problem. This ap-
proximation yields the eigenvectors of W, while the diffusion map
consists of the eigenvectors of M = D~1W, where Di; =Y ;Wi
Fowlkes et al. [2004] show how to approximate these row sums us-
ing only A and B, and we refer the reader to their article for further
details, and the pseudocode of the complete procedure.

Thus, a practical method for computing the diffusion maps involves
sampling the image. In Section 5 we show that, for a given ac-
curacy, the number of samples depends on N/ 72, where 7 is the
pairwise interaction range between pixels. Therefore, if the affin-
ity matrix allows all pairs of pixels to interact, a constant number
of samples will suffice. The exact number depends on the image
at hand, since the reduced matrix should ideally represent the main



Figure 3: Local edit propagation. Top: input with scribbles and
result using ordinary distances (middle) and diffusion distances
(right), computed with spatial coordinates (t = 16). Bottom: The
corresponding influence maps for the green scribble.

distinct regions present in the image. The samples are placed us-
ing stratified sampling of the image, as was also done by An and
Pellacini [2008]. The following times (in seconds) were measured!
when constructing a diffusion map with 7 eigenvectors for different
image sizes and numbers of samples:

05MP | 0.75MP | 1MP | 1.5MP | 2 MP
10 samples 0.58 0.58 0.79 1.12 1.53
30 samples 1.24 1.82 2.46 3.57 4.84
60 samples 2.44 3.66 4.95 7.20 9.75

4 Experimental Validation

In order to evaluate the practical benefits of using diffusion dis-
tances in place of regular pairwise distances between the original
data points, we experimented with a variety of common edge-aware
operators. For each operator we compare its performance with and
without the use of diffusion distances. Note that it is not our inten-
tion to demonstrate that one is able to achieve perfect results simply
by switching to diffusion distances, nor do we claim that similar re-
sults could not have been achieved in any other way. Rather, we
aim to show that there are practical scenarios where state-of-the-
art methods perform better with diffusion distances, given the same
input.

We experimented with a number of color spaces when computing
the affinity matrices, and for all the results shown in this paper we
use the CIELAB color space (normalized such that the L channel
range is [0, 1]). The affinities are defined by the Gaussian kernel (1)

with 62 = 0.1 for edge-preserving interpolation and smoothing, and
62 = 0.25 for matting,

We have also experimented with a number of different feature vec-
tors. Using the pixel colors along with spatial coordinates is an
attractive option, since it typically yields good results. However,
it reduces the spatial interaction range between pixels, and there-
fore requires using more Nystrom samples to compute the diffusion
map, as shown in Section 5. For that reason, in all of our results ex-
cept Figures 3 and 9, we use only the color at each pixel (no spatial
attenuation), and compute diffusion maps using 30 samples. Our
attempts to enrich the feature vectors with simple texture descrip-
tors (such as Gabor filter banks), were not successful so far and this
is left as a possible direction for a future work.

Throughout this section, for each result using the diffusion dis-
tances we report the value of + which we used. Possible strategies
for setting this parameter are discussed in Section 6.

Using C++ and Matlab on a 2.8 GHz Intel Core 2 Duo processor.

Figure 4: WLS edge-preserving smoothing. Top: input and smooth-
ing (A = 10) using color gradients (middle) and diffusion distances
(left, t = 4). Bottom: results after local contrast adjustments.

*
@

[Subr et al. 2009] WLS with diffusion

input image

Figure 5: A comparison with the method of Subr et al. [2009].

Local edit propagation. Figure 1 demonstrates the performance
of diffusion distances in the context of local edit propagation
from sparse user constraints by plugging these distances into the
optimization-based approach described by Lischinski et al. [2006].
The goal is to apply a warming filter to the city buildings and a
cooling filter in the sky and water regions using minimal user input.
This is a challenging task, due to the many very high-contrast tran-
sitions between the buildings. Indeed, the original method fails to
propagate the yellow scribble to capture the entire region of inter-
est. When using diffusion distances with r = 2 the result is slightly
better, but increasing the time to ¢ = 16 nicely captures the target
area, and produces a significantly better result.

In Figure 3 the goal is to change the hues of two adjacent strongly
textured regions. Although the two regions appear quite distinct to a
human observer, selecting each of them using state-of-the-art com-
mercial tools proved to require a substantial amount of user inter-
action. Using again the method of Lischinski ez al. [2006] we were
not able to obtain a satisfactory result with a sparse set of scribbles,
since the gradients between the two regions and inside each region
are of the same order of magnitude. Switching to diffusion maps
constructed using the color at each pixel only produced a similar
unsatisfactory result. However, by adding the spatial coordinates
to the feature vectors and feeding the resulting diffusion distances
into the same method, we were able to produce a more satisfactory
result.

The supplementary material contains additional local editing re-
sults, as well as examples of using diffusion distance in the con-
text of the distance-based blending approach of Yatziv and Sapiro
[2006]. Similar improvements in propagation may be observed
there as well.

In practice, scribble-based editing is intended for an iterative inter-
active workflow, where the user is able to add or remove scribbles
until a satisfactory result is achieved. With sufficient amount of user
input it is obviously possible to achieve results that are identical or
better than those that we have shown. Thus, the practical advan-
tage of using diffusion distances in this context lies in reducing the
amount of necessary user input.



Figure 6: Closed form matting with diffusion distances. Top: input
and ground truth. Bottom: corresponding results without (left) and
with diffusion distances (right, t = 2).

Edge-preserving smoothing. Figure 4 compares the results of
filtering an image with the WLS edge-preserving smoothing oper-
ator [Farbman et al. 2008] with and without the use of diffusion
distances. This example contains textures with high gradients on
the buildings in the background. The WLS operator controls the
degree of smoothing via a parameter A. When the value of A is
chosen so as to remove most of the texture form the building, this
results in faded edges between the buildings and the sky (top mid-
dle image). Such contrast reduction is undesirable for applications
such as image abstraction. When the same operator uses diffusion
distances, the contrast of these edges is better preserved (top right).
The bottom row shows what happens when the removed texture de-
tail is amplified and added back in (local contrast boost). It may
be seen that the detail on the buildings is boosted in a much more
uniform manner on the right.

Figure 5 shows a comparison between a result produced by the
method recently proposed by Subr ef al. [2009], and the result of
edge-preserving filtering with WLS using diffusion distances. Subr
et al. first search for the local extrema in the image, and then fit a
lower and an upper envelope to these extrema by solving a linear
system twice. It may be seen that WLS with diffusion distances is
able to remove the small scale detail on the vase just as effectively,
while avoiding the costs of non-linear filtering or solving multiple
linear systems. Both methods are still unable to smooth out coarser
texture and leave room for future work.

Matting. We also experimented with incorporating the diffusion
distance into matting method by Levin et al. [2008a]. Unlike many
matting algorithms that assume a tight trimap, this method also ad-
mits sparse user scribbles indicating background and foreground,
which are propagated over the image to yield an alpha matte. We
have modified the authors’ original code to use diffusion coordi-
nates instead of colors when constructing the matting Laplacian.
Figure 6 shows an example where the modified method produces
a matte that is closer to the ground truth than the original method.
As with local image editing, we found that fewer scribbles are nec-
essary to produce an accurate matte with diffusion distances in the
presence of textured regions. To further evaluate the matting per-
formance, we also ran the benchmark suggested in [Rhemann et al.
2009], but we did not see any significant increase in quantitative
accuracy. This can be explained by the fact that this benchmark
uses tight trimaps; thus, the ability of diffusion distances to propa-
gate across textured regions does not play a significant role. When
the input trimap is loose, the visual accuracy of the diffusion-based
mattes is sometimes better (see the supplementary materials).

4.1 Fuzzy Selection with Diffusion Maps

In local edit propagation, a particular adjustment is propagated and
applied to all the pixels within a contiguous region indicated by the

user. However, in complex fragmented regions one might want to
apply a different adjustment to different parts of the region. For
example, in Figure 7, modifying the color of the soil and the bushes
independently is difficult to accomplish using scribble-based local
propagation. An experienced Photoshop user might prefer first to
create a mask separating the ground from the sky, and then use
color range selection tools to further separate the ground to reds and
greens. Here we demonstrate that having diffusion maps under the
hood can also be useful for quickly obtaining similar fuzzy masks.

Recall that diffusion maps consist of the dominant eigenvectors of
the all-pairs affinity matrix, which discriminate between the domi-
nant modes in the data at various scales. Each eigenvector consists
of positive and negative values (shown in shades of red and blue
in Figures 1 and 2), with the transitions between negative and pos-
itive regions corresponding to transitions between clusters. Thus,
our idea is that given a scribble drawn by the user we first identify
which of the eigenvectors in the diffusion map “responds” most
strongly to this scribble by measuring the variance of each eigen-
vector in the pixels covered by the scribble. Having found such
an eigenvector we use it to produce a mask that captures either the
positive or the negative regions of this eigenvector.

Formally, given a user scribble S we first search for the eigenvector
y; which exhibits the highest variance in the area covered by the
scribble:

argmax Var {4 y;(x)} cs- ®

We then use this eigenvector to define two masks, for the areas
where the eigenvector is positive and negative, respectively:

MT = exp(y;)?
Vi exp(yy)? +exp(— )¢

- _ +
and lei =1 fMV,I )

where the parameter a enables the user to control the hardness of
the masks (a < 1 makes the masks softer, while a > 1 makes them
harder). Note that the masks are normalized such that their sum at
every pixel is 1.

It is often the case that the first eigenvector y effectively partitions
the image into two main regions (e.g., ground and sky, as seen in
Figures 1 and 2). Thus, if the scribble S is contained in one of
these two regions, we assume that it is the user’s intent to apply
the manipulation only inside the containing region. In this case, we
also define an attenuation mask:

My, Eres¥(x)>0
Mo = _ 10)
Mlyl ZxES W(x) <0

The final mask used to edit the image is then given by the product
of one of the masks M‘T,i or Mqt,- with the attenuation mask M.

The process is demonstrated in Figure 7. The user first draws
a scribble across the boundary between the two main regions in
the image (sky and ground). The first eigenvector responds most
strongly to this scribble, yielding a mask distinguishing between
the two regions, and the user is able to boost the local contrasts in
the sky without significant effect elsewhere. The next scribble is
drawn across the ground region, and the eigenvector that responds
most strongly discriminates between the red soil and the green veg-
etation. The user uses one of the two resulting masks (M{,ﬁ2 in this
case) to change the hue and saturation of the soil, and its comple-
ment (M%) to make the vegetation more green, using a different
hue/saturation adjustment. Here, attenuating by the mask of the
first eigenvector helps confine the edit to the ground region (the fig-
ure shows the attenuated mask Ma,,MITh). Finally, a scribble across
the sky produces a mask that discriminates between the blue sky
and the white clouds, enabling the user to deepen the color of the
sky. Again, the edits are attenuated to apply only in the sky region,
yielding the final result.
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Figure 7: Red Canyon State Park, Utah. Each scribble produces a corresponding mask by selecting from the diffusion map the eigenvector
with the highest variance under the scribble. The 2nd and 3rd masks are attenuated by the first eigenvector.

5 Analysis

The optimization-based edit propagation operators explored so far
in the literature may be grouped into two main classes, based on the
spatial range of the interactions that they explicitly account for. One
class corresponds to short-range/local interactions, while the other
to long-range/global (all-pairs) interactions. Below, we review the
methods used for solving the edit propagation problem in each of
these two cases, and conclude that these methods are not well suited
for handling middle-range interactions. However, a careful spectral
analysis of the corresponding affinity matrices leads naturally to a
hybrid solution method that makes it possible to handle this inter-
mediate case, both accurately and efficiently.

Interaction range. Optimization-based edge-aware edit propa-
gation methods solve a linear system of the form Lx = b, where
L =D —W is a non-homogeneous Laplacian matrix, W is an affin-
ity matrix, such as the one defined in eq. (2), and D is a diagonal
matrix given by D;; =Y ;W; ;. Let us define the spatial interac-
tion range T as the radius (in pixels) beyond which the pairwise
affinity between two pixels in the image falls below some thresh-
old €. For example, the 5-point inhomogeneous Laplacian operator
used in [Lischinski et al. 2006; Farbman et al. 2008] corresponds
to T = 1. Levin et al. [2004; 2008a] use a slightly larger (but still
constant) interaction range, while the all-pairs approach [An and
Pellacini 2008] uses an interaction range T = O(n), where n is the
dimension (width or height) of the image.

The interaction range 7 determines the manner in which sparse ed-
its may propagate across the image. When 7 is a small constant,
edits propagate well within smooth contiguous image regions, but
the propagation is blocked by strong edges in the image, so frag-
mented or strongly textured regions cannot be handled. At the other
extreme, when T = O(n), edits are allowed to propagate between re-
gions of similar attributes, even if these regions are distant and com-
pletely separated by regions with very different color attributes. If
one is interested in being able to handle fragmented regions, while
at the same time having the flexibility of local control, using an in-
termediate interaction range 1 < T < n might provide the answer.
However, as we shall see below, in the latter case it is not clear how
the resulting systems of linear equations can be efficiently com-
puted and solved in practice.

Existing approaches. Let us review the solution methods that are
commonly used to handle the two extreme cases. The case of sparse
Laplacian matrices has been studied extensively in the numerical
computing literature, since such matrices are used for approximat-
ing differential operators. It is well known [Trottenberg et al. 2001]
that such matrices have a condition number that grows as a function
of n?, and their eigenvectors correspond to modes with variations
at different scales (Fourier modes at different wavelengths). There-

fore, such matrices are treated with multi-scale preconditioners that
capture and rescale these modes, such as the geometric Multigrid
method [Trottenberg et al. 2001], or conjugate gradient with hierar-
chical basis preconditioning [Szeliski 1990].

Non-homogeneous sparse matrices can be solved using operator-
dependent Multigrid, Algebraic Multigrid [Trottenberg et al. 2001]
in O(N) time, where N is the dimension of the matrix (N = n?),
or using the locally-adapted hierarchical basis preconditioner of
Szeliski [2006]. Recently, several works showed that the actions
performed by these non-homogeneous Laplacian systems can be
approximated efficiently without explicitly constructing, precondi-
tioning, and solving the full-resolution linear system [Kopf et al.
2007; Fattal 2009].

In contrast, the global all-pairs Laplacians behave differently: they
are dense and hence linear relaxations such as Gauss-Seidel or con-
jugate gradient become prohibitively expensive, since each matrix-
vector multiplication costs O(N?). In natural images, which typi-
cally consist of a limited number of regions, each containing a large
number of pixels with similar attributes, the affinity matrix W is
close to low rank. An and Pellacini [2008] exploit this observation,
and use the Nystrom method [Williams and Seeger 2000], to first
drastically reduce the dimensionality of the matrix and then solve
the associated Laplacian in its reduced form, using the Woodbury
formula [Golub and Van Loan 1998]. The total cost of this approach
is O(m>N), where m is the (small) number of samples.

To summarize the discussion so far, a variety of efficient and accu-
rate solutions exist for the two extreme cases of either very sparse or
fully dense inhomogeneous Laplacians. These solutions are practi-
cally linear in the number of pixels N. However, these solutions are
not well suited for the intermediate case of 1 < T < n, since the
corresponding affinity matrices are neither sufficiently sparse, nor
sufficiently rank-deficient [An and Pellacini 2008].

Rank vs. interaction range. In order to propose an effective solu-
tion for these intermediate cases, let us first examine the manner in
which the rank of the affinity matrix W depends on 7. The top right
plot in Figure 8 shows several spectra of normalized Gaussian affin-
ity matrices corresponding to increasing values of oy (and hence
increasing values of 7). Note that for short interaction ranges, most
eigenvalues are non-negligible, but their number indeed decreases
as oy becomes larger. Plotting the numerical rank as a function of
N/ 72 (Figure 8, bottom left) reveals that as 7 gets smaller, the rank

grows approximately as N /2.

In the spatially-homogeneous case (a constant, or very smooth im-
age), this empirical result can be verified formally by noticing that
W is a circulant matrix that corresponds to convolution with the
affinity kernel, e.g., exp(—||r||?/c2). In this case, the eigenvalues
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Figure 8: Top left: an image from which several test windows with
different amounts of detail were chosen. Top right: eigenvalues of
affinity matrices for one of these regions. Bottom left: the effective
rank as a function of N/ 12 averaged over 70 randomly chosen 96 x
96 test windows (in blue). The red line starts at a constant value
on the left and grows to full rank linearly in N/ 12, indicating our
proposed sampling strategy. Bottom right: Nystrom approximation
error as a function of 7T for different sampling strategies, measured
for one of the windows.

Ay of W are given (up to scale) by [Oppenheim and Schafer 1975]
Mg o< exp(— o |[k[* (27/n)?), (1
where k are the indices in the Fourier domain. Thus, the number of

eigenvalues of W above some fixed threshold 7 is proportional to
the number of different k’s that satisfy:

exp(—op|k|*(2n/n)?) > 7, (12)

—o|k[*2x/n)* > log(n), (13)
log(n) n?

K2 < -7 o5 (14)

s

In two dimensions these are all the k’s that fall inside a circle whose
radius is proportional to n/0;, and substituting 65 = T and N = n?

we obtain that the rank of W is O(N/t2).

In the non-homogeneous case, if the image has c¢ clusters (c smooth
regions), the affinity matrix W is approximately block-diagonal
[Weiss 1999], with ¢ blocks, each corresponding to a different clus-
ter. The homogeneous analysis then applies to each block once 7
becomes sufficiently small, and thus the overall rank of W grows,
like before, as O(N/t?). The actual rank growth over individ-
ual test windows depends on their contents. In extremely clut-
tered/textured windows, the growth is more concave for large val-
ues of 7. Specifically, the actual slopes of the curves of the different
test windows on the left end of the plot (large 7) are between 0.85
and 6.39, while on the right end of the plot (approaching 7 = 1) the
slopes are between 0.82 and 0.93.

To summarize, the affinity matrices for 1 < 7 < n case have rank
O(N/7?) and a sparsity pattern of O(t?) non-zeros per row. This
means that when applying the Nystrém approximation one should
sample the image at a rate of O(1/7) along each dimension (one in
every O(12) columns of W). Then, the reduced matrix A in eq. (6) is
full-rank and has a sparsity pattern of O(1), which makes it possible
to use standard iterative linear solvers. As Figure 8 shows, for large
7 values the rank grows somewhat faster than the linear prediction.

Therefore, we suggest the following strategy: start with some con-
stant number (tens to a few hundred) samples for the all-pairs case,
and increase the number of samples proportionally to N /2. This
strategy is demonstrated in the bottom right plot of Figure 8, which
confirms that the error corresponding to a constant number of sam-
ples increases as 7 decreases, while using N /72 samples results in
a non-increasing error.

Edit propagation example. Figure 9 demonstrates the importance
of using an appropriate sampling rate for edit propagation in prac-
tice. Suppose that given the input image the user wishes to recolor
all of the tulips and marks a single tulip with one scribble, while
placing another scribble across the background. The all-pairs ap-
proach is well-suited for this scenario, and the desired interaction
range here is roughly the entire image. According to our analysis, a
small constant number of samples suffices for this case. Indeed, the
propagation masks obtained using a small (50) and a larger (500)
number of samples look virtually identical, and produce the same
visual result. In contrast, suppose the goal is to recolor only the left
and right flowers, while keeping the original color in the middle. To
achieve this goal with the all-pairs approach, the interaction range
must be significantly reduced. In this case, using a small number of
samples no longer produces the desired mask, which is nevertheless
obtained with a suitably larger number of samples.

Efficient numerical solution. The analysis we have presented in
this section, suggests not only the correct sampling rate to use with
intermediate interaction ranges, but also how to efficiently solve the
associated linear system D — W. According to the Nystrom approx-
imation,

W ~UA~'UT, where U = { 2 } (15)
and applying the Woodbury identity [Golub and Van Loan 1998]
yields:

D-vA 'whH '=p '-Dplu(-A+UTD ') 'D7L. (16)

An and Pellacini were able to evaluate eq. (16) efficiently using
direct methods, because they use a constant number of samples
m < N. When the rank of W is not sufficiently small, and hence
the number of samples m has to be larger, we observe that it is still
possible to evaluate eq. (16) efficiently. This is so since both A
and UTD™'U are sparse (the latter is sparse since it involves in-
ner products between vectors that are nonzero over mostly non-
overlapping image regions). Thus, instead of using direct matrix
inversion, (—A +U” D~'U) can be inverted using standard sparse
linear solvers in linear time.

6 Discussion

The time parameter 7. In the diffusion map, edges separating
between larger clusters appear in the leading eigenvectors, while
lower eigenvectors are populated by edges separating finer clus-
ters. Thus, the time parameter ¢ effectively attenuates transitions
between these finer clusters with respect to coarser ones. By in-
creasing the value of 7 one obtains stronger, more aggressive edge-
preserving smoothing and interpolation. We envision several op-
tions for setting the value of this parameter in practice. One option
is to expose it to the user; for example, after placing a scribble the
user can interactively manipulate the value of ¢ thereby adjusting
(dilating or eroding) the corresponding influence mask. Another
option, left for future work, is to automatically determine the value
of ¢ from the geometry and brush size of the user’s brush strokes:
wide strokes, as well as long strokes crossing multiple edges will
result in a higher value of ¢. It should be emphasized here that
changing the value of ¢ only rescales the diffusion map eigenvec-
tors (eq. 4), but does not require recomputing them.

Computational costs. In order to use diffusion distances instead of
regular distances in color space it is necessary to first construct the



input image

mask (50 samples) mask (500 samples)

edited result

edited result

input + scribbles

input + scribbles  mask (50 samples) mask (500 samples)

edited result edited result

Figure 9: A small number of samples suffices for all-pairs propa-
gation with large interaction range (two top rows), but is no longer
sufficient when the range is reduced (two bottom rows).

diffusion map. The computation times for our current implementa-
tion are reported in Section 4. While these times might appear sig-
nificant compared to the interactive editing turnaround times of the
fast bilateral filter [Chen et al. 2007] or of edge-avoiding wavelets
[Fattal 2009], one should keep in mind that the diffusion map only
needs to be computed once, before interactive editing commences.
Thus, one might view it as a color space conversion, done when the
image to be edited is loaded from the disk. As such, it does not
necessarily slow down the interaction of the user with the image
(computations might only be a bit slower if more than 3 eigenvec-
tors are used instead of the 3 color channels of the original image).

Strengths and weaknesses. One of the challenges of edge-aware
operators is to distinguish between high gradients (color differ-
ences) that occur in highly textured regions and between salient
edges that separate different larger scale regions. In our approach
we effectively assume that textured regions are characterized by
multiple transitions between the texture elements, thus there are
more paths in color space between different valued pixels occurring
within the same texture than between distinct larger scale regions.

Thus, the use of diffusion distances in place of color differences is
advantageous in images containing relatively large heavily textured
regions: edge-aware interpolation is shown to propagate better in-
side such regions, and the removal of texture by edge-preserving
smoothing is shown to be more effective. We do not expect the use
of diffusion distances to introduce a significant improvement inside
smooth image regions, or when the user input (in edge-aware in-
terpolation) is relatively precise. Examples include scribbles that
cover most of the target region, scribbles that follow closely the
boundaries of such regions, tight trimap, etc. However, we have not
encountered cases where the results suffer from the use of diffusion
distances, except bearing the added computational costs discussed
carlier.

It should be pointed out that not all textures satisfy the assumptions
of our approach. For example, a skirt with many colorful swatches
might not have significantly more transition pixels between the dif-
ferent swatches than the transitions between the shirt and the back-
ground. Thus, some inter-swatch transitions inside the shirt might
be present already in one of the leading eigenvectors, the diffu-
sion distance between them will still be significant, and propaga-
tion/smoothing inside the shirt will not be significantly improved.
As another difficult example, consider two adjacent regions which
are semantically distinct, but have textures with similar colors. In
such a case, propagation from a scribble inside one region might
propagate into the adjacent region give a sufficiently high value of
t, but for a small value of ¢ will not be better than when using or-
dinary color differences. Both examples above are included in the
supplementary material.

7 Conclusions

In this paper we have introduced the idea of performing edge-aware
operations on images using diffusion distances instead of Euclidean
distances. We have demonstrated that diffusion distances, which ac-
count for both the length and the number of paths between the data
points in the feature space, provide local edit propagation schemes
and edge-preserving smoothing operators with a valuable global
perspective of the clusters present in the feature space at a variety
of scales. We have also provided an analysis that extends the appli-
cability of the Nystrém method to a more general class of affinity
matrices, and suggested an efficient solution for the entire range of
spatial interactions. To conclude our paper it remains to point out a
number of interesting directions for future work.

The use of diffusion distances spans a two-dimensional space of
edge-aware operators. The two axes of this space are the diffusion
time parameter ¢ and the spatial interaction range 7. Currently, it
is up to the user to specify the appropriate values for these two pa-
rameters. This provides an important degree of user control, but
it is currently unclear how to automatically determine the optimal
combination of these two parameters for a particular image manip-
ulation task.

We currently construct diffusion maps using only the color and
(sometimes) spatial position of the pixels in the image. A natural
direction to explore is working in a richer feature space. However,
our preliminary attempts in this direction were not too successful,
since as was pointed out earlier, existing texture descriptors effec-
tively operate at a lower spatial resolution.

Finally, we believe that further integration of higher-level of im-
age understanding into image manipulation operators is another
promising, yet challenging research direction. All of the existing
edge-aware operators are oblivious to semantic content. For exam-
ple, a human present in the image (or any other object with a large
variance in texture and/or color) is unlikely to be selected or edited
as a single region, unless sufficient user input is provided. Thus, in-
tegration of object detection and recognition algorithms into image
editing tools seems a fruitful direction to explore.
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