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Figure 1: Three examples of applications that benefit from our fast convolution approximation. Left: gradient field integration; Middle:
membrane interpolation; Right: scattered data interpolation. The insets show the shapes of the corresponding kernels.

Abstract

We present a novel approach for rapid numerical approximation of
convolutions with filters of large support. Our approach consists of
a multiscale scheme, fashioned after the wavelet transform, which
computes the approximation in linear time. Given a specific large
target filter to approximate, we first use numerical optimization to
design a set of small kernels, which are then used to perform the
analysis and synthesis steps of our multiscale transform. Once the
optimization has been done, the resulting transform can be applied
to any signal in linear time. We demonstrate that our method is
well suited for tasks such as gradient field integration, seamless im-
age cloning, and scattered data interpolation, outperforming exist-
ing state-of-the-art methods.
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1 Introduction

Many tasks in computer graphics and image processing involve
applying large linear translation-invariant (LTI) filters to images.
Common examples include low- and high-pass filtering of images,
and measuring the image response to various filter banks. Some less
obvious tasks that can also be accomplished using large LTI filters
are demonstrated in Figure 1: reconstructing images by integrating
their gradient field [Fattal et al. 2002], fitting a smooth membrane
to interpolate a set of boundary values [Pérez et al. 2003; Agarwala
2007], and scattered data interpolation [Lewis et al. 2010].

While convolution is the most straightforward way of applying an
LTI filter to an image, it comes with a high computational cost:
O(n2) operations are required to convolve an n-pixel image with
a kernel of comparable size. The Fast Fourier Transform offers a
more efficient, O(n logn) alternative for periodic domains [Brigham
1988]. Other fast approaches have been proposed for certain special
cases. For example, Burt [1981] describes a multiscale approach,
which can approximate a convolution with a large Gaussian kernel
in O(n) time at hierarchically subsampled locations. We review this
and several other related approaches in the next section.

In this work, we generalize these ideas, and describe a novel mul-
tiscale framework that is not limited to approximating a specific
kernel, but can be tuned to reproduce the effect of a number of
useful large LTI filters, while operating in O(n) time. Specifically,
we demonstrate the applicability of our framework to convolutions
with the Green’s functions that span the solutions of the Poisson
equation, inverse distance weighting kernels for membrane inter-
polation, and wide-support Gaussian kernels for scattered data in-
terpolation. These applications are demonstrated in Figure 1.

Our method consists of a multiscale scheme, resembling the Lapla-
cian Pyramid, as well as certain wavelet transforms. However,
unlike these more general purpose transforms, our approach is to
custom-tailor the transform to directly approximate the effect of a
given LTI operator. In other words, while previous multiscale con-
structions are typically used to transform the problem into a space
where it can be better solved, in our approach the transform itself
directly yields the desired solution.

Specifically, we repeatedly perform convolutions with three small,
fixed-width kernels, while downsampling and upsampling the im-
age, so as to operate on all of its scales. The weights of each of
these kernels are numerically optimized such that the overall action
of the transform best approximates a convolution operation with
some target filter. The optimization only needs to be done once for
each target filter, and then the resulting multiscale transform may
be applied to any input signal in O(n) time. The motivation behind
this design was to avoid dealing with the analytical challenges that
arise from the non-idealness of small finite filters, on the one hand,
while attempting to make the most out of the linear computational
budget, on the other.

Our scheme’s ability to closely approximate convolutions with the
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free space Green’s function [Evans 1998] is high enough to allow
us to invert a certain variant of the Poisson equation. We show that
for this equation our approach is faster than state-of-the-art solvers,
such as those based on the multigrid method [Kazhdan and Hoppe
2008], offering improved accuracy for a comparable number of op-
erations, and a higher ease of implementation.

While we demonstrate the usefulness of our approach on a num-
ber of important applications, and attempt to provide some insights
on the limits of its applicability later in the paper, our theoretical
analysis of these issues is certainly incomplete, and is left as an
interesting avenue for future work.

2 Background

Besides the straightforward O(n2) implementation of convolution,
there are certain scenarios where it can be computed more effi-
ciently. Over periodic domains, every convolution operator can be
expressed as a circulant Topelitz matrix, which is diagonalized by
the Fourier basis. Thus, convolutions with large kernels over peri-
odic domains may be carried out in O(n logn) time using the Fast
Fourier Transform [Brigham 1988].

Convolution with separable 2D kernels, which may be expressed
as the outer product of two 1D kernels, can be sped up by first
performing a 1D horizontal convolution, followed by one in the
vertical direction (or vice versa). Thus, the cost is O(kn), where
k is the length of the 1D kernels. Non-separable kernels may be
approximated by separable ones using the SVD decomposition of
the kernel [Perona 1995].

B-spline filters of various orders and scales may be evaluated at
constant time per pixel using repeated integration [Heckbert 1986]
or generalized integral images [Derpanis et al. 2007].

Many methods have been developed specifically to approximate
convolutions with Gaussian kernels, because of their important role
in image processing [Wells, III 1986]. Of particular relevance to
this work is the hierarchical discrete correlation scheme proposed
by Burt [1981]. This multiscale scheme approximates a Gaussian
pyramid in O(n) time. Since convolving with a Gaussian band-
limits the signal, interpolating the coarser levels back to the finer
ones provides an approximation to a convolution with a large Gaus-
sian kernel in O(n). However, Burt’s approximation is accurate
only for Gaussians of certain widths.

Burt’s ideas culminated in the Laplacian Pyramid [Burt and Adel-
son 1983], and were later connected with wavelets [Do and Vetterli
2003]. More specifically, the Laplacian pyramid may be viewed as
a high-density wavelet transform [Selesnick 2006]. These ideas are
also echoed in [Fattal et al. 2007], where a multiscale bilateral filter
pyramid is constructed in O(n logn) time.

The Laplacian pyramid, as well as various other wavelet trans-
forms [Mallat 2008] decompose a signal into its low and high
frequencies, which was shown to be useful for a variety of anal-
ysis and synthesis tasks. In particular, it is possible to approxi-
mate the effect of convolutions with large kernels. However, even
though these schemes rely on repeated convolution (typically with
small kernels), they are not translation-invariant, i.e., if the input is
translated, the resulting analysis and synthesis will not differ only
by a translation. This is due to the subsampling operations these
schemes use for achieving their fast O(n) performance. Our scheme
also uses subsampling, but in a more restricted fashion, which was
shown by Selesnick [2006] to increase translation invariance.

One scenario, which gained considerable importance in the past
decade, is the recovery of a signal from its convolved form, e.g., an
image from its gradient field [Fattal et al. 2002]. This gives rise to a

translation-invariant system of linear equations, such as the Poisson
Equation. The corresponding matrices are, again, Topelitz matrices,
which can be inverted in O(n logn) time, using FFT over periodic
domains. However, there are even faster O(n) solvers for handling
specific types of such equations over both periodic and non-periodic
domains. The multigrid [Trottenberg et al. 2001] method and hier-
archical basis preconditioning [Szeliski 1990] achieve linear perfor-
mance by operating at multiple scales. A state-of-the-art multigrid
solver for large gradient domain problems is described by Kazhdan
and Hoppe [2008], and a GPU implementation for smaller problems
is described by McCann and Pollard [2008].

Since the matrices in these linear systems are circulant (or nearly
circulant, depending on the domain), their inverse is also a circu-
lant convolution matrix. Hence, in principle, the solution can be
obtained (or approximated) by convolving the right-hand side with
a kernel, e.g., the Green’s function in cases of the infinite Poisson
equation. Our approach enables accurately approximating the con-
volution with such kernels, and hence provides a more efficient, and
easy to implement alternative for solving this type of equations.

Gradient domain techniques are also extensively used for seamless
cloning and stitching [Pérez et al. 2003], yielding a similar linear
system, but with different (Dirichlet) boundary conditions, typi-
cally solved over irregularly shaped domains. In this scenario, the
solution often boils down to computing a smooth membrane that
interpolates a set of given boundary values [Farbman et al. 2009].
Agarwala [2007] describes a dedicated quad-tree based solver for
such systems, while Farbman et al. [2009] avoid solving a linear
system altogether by using mean-value interpolation. In Section 5
we show how to construct such membranes even more efficiently
by casting the problem as a ratio of convolutions [Carr et al. 2003].

This approach can also be useful in more general scattered data in-
terpolation scenarios [Lewis et al. 2010], when there are many data
points to be interpolated or when a dense evaluation of the interpo-
lated function is needed. Our work provides an efficient approxi-
mation for scattered data interpolation where it is important to use
large convolution filters that propagate the information to the entire
domain.

3 Method

In this section we describe our framework in general and motivate
our design decisions. The adaptation of the framework to several
specific problems in computer graphics is discussed immediately
afterwards.

Linear translation-invariant filtering is used extensively in computer
graphics and image processing for scale separation. Indeed, many
image analysis and manipulation algorithms cannot succeed with-
out a suitably constructed multiscale (subband) decomposition. In
most applications, the spectral accuracy needed when extracting a
particular band is proportional to the band level: high-frequency
components are typically extracted with small compact filters that
achieve low localization in the frequency domain, while low fre-
quencies are typically needed at a higher spectral accuracy and,
hence, large low-pass filters are used.

Subband architectures such as wavelet transforms and Laplacian
pyramids rely on a spectral “divide-and-conquer” strategy where,
at every scale, the spectrum is partitioned via filtering and then the
lower end of the spectrum, which may be subsampled without a
major loss of data, is further split recursively. The subsampling
step allows extracting progressively lower frequencies using filters
of small fixed length, since the domain itself is shrinking and dis-
tant points become closer, due to the use of subsampling. This ap-
proach leads to highly efficient linear-time processing of signals
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Algorithm 1 Our multiscale transform
1: Determine the number of levels L
2: {Forward transform (analysis)}
3: a0 = a
4: for each level l = 0 . . .L−1 do
5: al

0 = al

6: al+1 =↓(h1 ∗al)
7: end for
8: {Backward transform (synthesis)}
9: âL = g∗aL

10: for each level l = L−1 . . .0 do
11: âl = h2 ∗ (↑ âl+1)+g∗al

0
12: end for

Figure 2: Our subband architecture flow chart and pseudocode.

and is capable of isolating low-frequency modes up to the largest
spatial scale (the DC component of the image).

While it may not be a major obstacle for some applications, these
decompositions suffer from two main shortcomings. First, the re-
sulting transformed coordinates, and therefore the operations per-
formed using these coordinates, are not invariant to translation.
Thus, unlike convolution, shifting the input image may change the
outcome by more than just a spatial offset. Second, to achieve the
O(n) running time, it is necessary to use finite impulse response
filters. These filters can achieve some spatial and spectral localiza-
tion but do not provide an ideal partitioning of the spectrum. As
we demonstrate here, these properties are critical for some appli-
cations (such as solving the Poisson equation) and for the design
of particularly shaped kernels. In fact, these two shortcomings dic-
tate the design of the new scheme we describe below, whose aim is
to achieve an optimal approximation of certain translation-invariant
operators under the computational cost budget of O(n).

Figure 2 illustrates the multiscale filtering scheme that we use and is
inspired by the architectures mentioned above. The forward trans-
form consists of convolving the signal with an analysis filter h1,
and subsampling the result by a factor of two. This process is then
repeated on the subsampled data. Additionally, an unfiltered and
unsampled copy of the signal is kept at each level. Formally, at
each level we compute:

al
0 = al , (1)

al+1 = ↓(h1 ∗al), (2)

where the superscript l denotes the level in the hierarchy, al
0 is the

unfiltered data kept at each level, and ↓ denotes the subsampling
operator. The transform is initiated by setting a0 = a, where a is
the input signal to be filtered.

The backward transformation (synthesis) consists of upsampling by
inserting a zero between every two samples, followed by a convolu-
tion, with another filter, h2. We then combine the upsampled signal
with the one stored at that level after convolving it with a third filter
g, i.e.,

âl = h2 ∗ (↑ âl+1)+g∗al
0, (3)

where ↑ denotes the zero upsampling operator. Note that unlike in
most subband architectures, our synthesis is not intended to invert
the analysis and reproduce the input signal a, but rather the com-
bined action of the forward and backward transforms â0 is meant to
approximate the result of some specific linear translation-invariant
filtering operation applied to the input a.

This scheme resembles the discrete fast wavelet transform, up to
the difference that, as in the Laplacian pyramid, we do not sub-
sample the decomposed signal (the high-frequency band in these
transformations and the all-band al

0 in our case). Similarly to the
high density wavelet transformation [Selesnick 2006], this choice
is made in order to minimize the subsampling effect and to increase
the translation invariance.

Assuming ideal filtering was computationally feasible, h1 and h2
could be chosen so as to perfectly isolate and reconstruct progres-
sively lower frequency bands of the original data, in which case the
role of g would be to approximate the desired filtering operation.
However, since we want to keep the number of operations O(n),
the filters h1,h2 and g must be finite and small. This means that the
design of these filters must account for this lack of idealness and
the resulting complex interplay between different frequency bands.
Thus, rather than deriving the filters h1,h2 and g from explicit ana-
lytic filter design methodologies, we numerically optimize these fil-
ters such that their joint action will best achieve the desired filtering
operation. In summary, our approach consists of identifying and al-
locating a certain amount of computations with reduced amount of
subsampling, while remaining in the regime of O(n) computations
and then optimizing this allocated computations to best approxi-
mate convolution with large filters.

3.1 Optimization

In order to approximate convolutions with a given target kernel f ,
we seek a set of kernels F = {h1,h2,g} that minimizes the follow-
ing functional

argmin
F

�â0
F − f ∗a�2, (4)

where â0
F is the result of our multiscale transform with the kernels

F on some input a. In order to carry out this optimization it re-
mains to determine the types of the kernels and the number of their
unknown parameters. The choice of the training data a depends on
the application, and will be discussed in the next section. Note that
once this optimization is complete and the kernels have been found,
our scheme is ready to be used for approximating f ∗a on any given
signal a. All of the kernels used to produce our results are provided
in the supplementary material, and hence no further optimization is
required to use them in practice.

In order to minimize the number of total arithmetic operations, the
kernels in F should be small and separable. The specific choices
reported below correspond, in our experiments, to a good trade-off
between operation count and approximation accuracy. Using larger
and/or non-separable filters increases the accuracy, and hence the
specific choice depends on the application requirements. Remark-
ably, we obtain rather accurate results using separable kernels in
F , even for non-separable target filters f . This can be explained by
the fact that our transform sums the results of these kernels, and the
sum of separable kernels is not necessarily separable itself.

Furthermore, the target filters f that we approximate have rotational
and mirroring symmetries. Thus, we explicitly enforce symmetry
on our kernels, which reduces the number of degrees of freedom
and the number of local minima in the optimization. For example, a
separable 3-by-3 kernel is defined by only two parameters ([a,b,a] ·
[a,b,a]�) and a separable 5-by-5 kernel by three parameters. As
for non-separable kernels, a 5-by-5 kernel with these symmetries



is defined by six parameters. Depending on the application, the
nature of the target filter f and the desired approximation accuracy,
we choose different combinations of kernels in F . For example,
we used between 3 and 11 parameters in order to produce each of
the kernel sets used in Sections 4 and 5.

To perform the optimization we use the BFGS quasi-Newton
method [Shanno 1970].1 To provide an initial guess we set the
kernels to Gaussians. Each level is zero-padded by the size of the
largest kernel in F at each level before filtering. Typically, we start
the optimization process on a low-resolution grid (32x32). This is
fast, but the result may be influenced by the boundaries and the spe-
cific padding scheme used. Therefore, the result is then used as an
initial guess for optimization over a high resolution grid, where the
influence of the boundaries becomes negligible.

In the next sections we present three applications that use this ap-
proach to efficiently approximate several different types of filters.

4 Gradient integration

Many computer graphics applications manipulate the gradient field
of an image [Fattal et al. 2002; McCann and Pollard 2008; Orzan
et al. 2008]. These applications recover the image u that is closest in
the L2 norm to the modified gradient field v by solving the Poisson
equation:

∆u = divv, (5)

where ∆ is a discrete Laplacian operator. Typically von Neumann
boundary conditions, ∂u/∂n = 0 where n is the unit boundary nor-
mal vector, are enforced.

Green’s functions G(x,x�) define the fundamental solutions to the
Poisson equation, and are defined by

∆G(x,x�) = δ (x−x�), (6)

where δ is a discrete delta function. When (5) is defined over an
infinite domain with no boundary conditions, the Laplacian opera-
tor becomes spatially-invariant, and so does its inverse. In this case,
the Green’s function becomes translation-invariant depending only
on the (scalar) distance between x and x�. In two dimensions this
free-space Green’s function is given by

G(x,x�) = G(�x−x��) = 1
2π

log
1

�x−x�� . (7)

Thus, for a compactly supported right-hand side, the solution of (5)
is given by the convolution

u = G∗divv. (8)

This solution is also known as the Newtonian potential of divv
[Evans 1998]. It can be approximated efficiently using our con-
volution pyramid, for example by zero-padding the right-hand side.

The difference between this formulation and imposing von Neu-
mann boundary conditions is that the latter enforces zero gradients
on the boundary, while in the free-space formulation zero gradi-
ents on the boundary can be encoded in the right-hand side serving
only as a soft constraint. Forcing the boundary gradients to zero is
a somewhat arbitrary decision, and one might argue that it may be
preferable to allow them to be determined by the function inside the
domain. In fact, a similar approach to image reconstruction from its
gradients was used by Horn [1974] in his seminal work.

To perform the optimization in (4) we chose a natural greyscale
image I, and set the training signal a to the divergence of its gradient

1Specifically, we use fminunc from Matlab’s Optimization Toolbox.
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Figure 3: Reconstruction accuracy for kernel sets of different sizes.

field: a = div∇I, while f ∗a = I. We chose a natural image I since
the training data a should not be too localized in space (such as a
delta function). Our scheme is not purely translation-invariant and
a localized a might lead to an over-fitted optimum that would not
preform as well in other regions where the training signal a is zero.
Natural images are known to be stationary signals with no absolute
spatial dependency and, moreover, this is the class of signals we
would like to perform best on.

We experimented with a number of different kernel size combina-
tions for the kernel set F . The results of these experiments are
summarized in Figure 3. These results indicate that increasing the
widths of the h1,h2 kernels reduces the error more effectively than
increasing the width of g. We found the set F5,3 that uses a 5-
by-5 kernel for h1,h2 and a 3-by-3 kernel for g to be particularly
attractive, as it produces results that are visually very close to the
ground truth, while employing compact kernels. A more accurate
solution (virtually indistinguishable from the ground truth) may be
obtained by increasing the kernel sizes to 7-by-7/5-by-5 (F7,5) in
exchange for a modest increase in running time, or even further to
9-by-9/5-by-5 (F9,5). Note that we have no evidence that the best
kernels we were able to obtain in our experiments correspond to the
global optimum, so it is conceivable that even better accuracy may
be achieved using another optimization scheme, or a better initial
guess.

Table 1 summarizes the running times of our optimized CPU im-
plementation for kernel sets F5,3 and F7,5 on various image sizes.

grid size time (5x5/3x3) time (7x7/5x5)
(millions) (sec, single core) (sec, single core)

0.26 0.0019 0.00285
1.04 0.010 0.015
4.19 0.047 0.065
16.77 0.19 0.26
67.1 0.99 1.38

Table 1: Performance statistics for convolution pyramids. Re-
ported times exclude disk I/O and were measured on a 2.3GHz Intel
Core i7 (2820qm) MacBook Pro.

Figure 4(a) shows a reconstruction of the free-space Green’s func-
tion obtained by feeding our method a centered delta function as
input. A comparison to the ground truth (the solution of (6)) re-
veals that the mean absolute error (MAE) is quite small even for
the F5,3 kernel set:

grid size F5,3 MAE F7,5 MAE
10242 0.0034 0.0017
20482 0.0034 0.0016
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Figure 4: Gradient field integration. (a) Reconstruction of the
Green’s function. (b) Our reconstructions exhibit spatial invari-
ance. (c) A natural test image. (d) Reconstruction of (c) from its
gradient field using F5,3. (e) Absolute errors (magnified by x50).
(f)-(g) Reconstruction of (c) from its gradient field using F7,5, and
the corresponding errors.

Changing the position of the delta function’s spike along the x-axis
and plotting a horizontal slice through the center of each resulting
reconstruction (Figure 4(b)), reveals that our reconstructions exhibit
very little spatial variance.

Figure 4(c) shows a natural image (different from the one used as
training data by the optimization process), whose gradient field di-
vergence was given as input to our method. Two reconstructions
and their corresponding errors are shown in images (d)–(g). The
mean absolute error of our reconstruction is 0.0045 with F5,3 and
0.0023 with F7,5. Visually, it is difficult to tell the difference be-
tween either reconstruction and the original image.

Figure 5: Gradient domain HDR compression. Left column: re-
sults using a Poisson solver with von Neumann boundary condi-
tions. Right column: results using our approximate convolution.

In Figure 5 we show HDR compression results produced using gra-
dient domain image compression [Fattal et al. 2002]. The results
on the left were obtained using a Poisson solver with von Neumann
boundary conditions, while those on the right uses our approxima-
tion. In both cases, we use the same post-processing, which con-
sists of stretching the result so 0.5% of the pixels are dark-clipped.
While some differences between the results may be noticed, it is
hard to prefer one over the other. Additional results are included in
the supplementary material.

In this context of gradient field integration, our method presents a
faster alternative to linear solvers, while also being easier to im-
plement. Figure 6 plots the reconstruction error as a function of
running time of our method to that of two other solvers: the in-
core version of Kazhdan and Hoppe’s solver [2008], and the stan-
dard multigrid solver used by Fattal et al. [2002]. A comparison
performed by Bhat et al. [2008] indicates that the in-core version
of the Kazhdan-Hoppe solver is one of the fastest currently avail-
able CPU-based multigrid solvers for such reconstruction. Indeed,
the plots in Figure 6 confirm its superior convergence. However,
for most practical graphics applications, a reconstruction error in
the range of 0.001–0.0001 is sufficient, and our method is able to
achieve this accuracy considerably faster than the Kazhdan-Hoppe
solver, while being simpler to implement and to port to the GPU.

McCann and Pollard [2008] describe a GPU-based implementation
of a multigrid solver, which, at the time, enabled to integrate a one-
megapixel image about 20 times per second, supporting interactive
gradient domain painting. Our current single core CPU-based im-
plementation already enables to integrate such an image 33 times
per second. We expect a GPU implementation to bring forth a sig-
nificant additional speedup factor.

Since the exact running times depend greatly on the desired accu-
racy and on the implementation specifics, it is important to gain a
better understanding of the speedup in terms of operation counts.
A standard multigrid solver, such as the one used by Fattal et al.
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Figure 6: Error vs. time for our method with F5,3 and F7,5 kernel
sets, the in-core streaming multigrid solver of Kazhdan and Hoppe
with and without the use of SSE (KH08-SSE, KH08) , and the multi-
grid solver used by Fattal et al. [2002] (FLW02).

[2002], performs restriction and prolongation operations to change
grid resolutions, with a few relaxation iterations and one resid-
ual computation at each resolution [Trottenberg et al. 2001]. Al-
though the restriction/prolongation kernels may vary between dif-
ferent schemes, their sizes (and hence costs) are typically com-
parable to those of our h1 and h2 kernels. The cost of a single
Gauss-Seidel relaxation iteration is 6n operations (multiplications
and additions). Together with the residual computation this yields
18n operations on the fine resolution grid, when a single V-cycle is
performed with only one relaxation iteration before and after each
restriction (known as the V(1,1) scheme). In comparison, applying
the 3-by-3 g kernel in our method costs 12n operations on the finest
resolution grid.

Thus, our method’s operation count is smaller than that of even the
simplest multigrid V-cycle, while the accuracy we achieve is bet-
ter, as demonstrated in Figure 6. In order to achieve higher accu-
racy, a multigrid solver might perform more V-cycles or use more
relaxation iterations, with a corresponding increase in the number
of operations. Similarly, we can also apply our transform itera-
tively. Specifically, at each iteration the transform is re-applied on
the residual, and the result is added to the solution. This is how the
curves corresponding to F5,3 and F7,5 in Figure 6 were produced.

5 Boundary interpolation

Applications such as seamless image cloning [Pérez et al. 2003]
and image stitching [Szeliski 2006] can be formulated as bound-
ary value problems and effectively solved by constructing a smooth
membrane that interpolates the differences along a seam between
two images across some region of interest [Farbman et al. 2009].

Such membranes have originally been built by solving the Laplace
equation [Pérez et al. 2003]. However, Farbman et al. [2009]
showed that other smooth interpolation schemes, such as mean-
value interpolation may be used as well, offering computational
advantages. Here we show how to construct a suitable membrane
even faster by approximating Shepard’s scattered data interpolation
method [Shepard 1968] using a convolution pyramid.

Let Ω denote a region of interest (on a discrete regular grid), whose
boundary values are given by b(x). Our goal is to smoothly in-
terpolate these values to all grid points inside Ω. Shepard’s method
defines the interpolant r at x as a weighted average of known bound-
ary values:

r(x) = ∑k wk(x)b(xk)

∑k wk(x)
, (9)

where xk are the boundary points. In our experiments we found

that a satisfactory membrane interpolant is obtained by using the
following weight function:

wk(x) = w(xk,x) = 1/d(xk,x)3, (10)

which has a strong spike at the boundary point xk and decays rapidly
away from it.

Naive evaluation of (9) is expensive: assuming that the number
of boundary values is K and the number of points in Ω is n, the
computational cost is O(Kn). Our multiscale transform allows
us to approximate the computation in O(n) time. Following Carr
et al. [2003], our first step is to re-write Shepard’s method in terms
of convolutions. We first define r̂ as an extension of b to the entire
domain:

r̂(xi) =

�
b(xk), for xi = xk on the boundary
0 otherwise (11)

and rewrite (9) as a ratio of convolutions:

r(xi) =
∑n

j=0 w(xi,x j)r̂(x j)

∑n
k=0 w(xi,x j)χr̂(x j)

=
w∗ r̂

w∗χr̂
(12)

where χr̂ is the characteristic function corresponding to r̂ (χr̂ is 1
where r̂ is non-zero, 0 otherwise). Intuitively, including the char-
acteristic function χ in the denominator ensures that the weights of
the zeros in r̂ are not accumulated.

Again, we use the optimization to find a set of kernels F , with
which our convolution pyramid can be applied to evaluate (12). To
define the training data, we set b to be the boundary of a simple
rectangular domain with random values assigned at the boundary
grid points, and compute an exact membrane r(x) using (12). Our
optimization then attempts to match r, which is a ratio of two convo-
lutions, directly, rather than matching each convolution separately.
This is important to ensure that the decay of the filter w is accurately
reproduced by our transform over the entire domain.

As in the previous application, we were able to produce satisfactory
interpolating membranes using an F5,3 kernel set, consisting of 5-
by-5 separable filters for h1,h2 and a single 3-by-3 separable filter
for g, regardless of the size and the shape of the domain. These
kernels are provided in the supplementary material.

In Figure 7 we compare seamless image cloning using our method
with that produced with a Laplacian membrane [Pérez et al. 2003].
Note that despite the slight differences between the two membranes
the final seamless compositing results of both methods are difficult
to distinguish visually.

The running time of this method amounts to two evaluations of
approximate convolution, one with R̂ and one with χR̂, where the
times for a single convolution are reported in Table 1. We have al-
ready established in the previous section that our approach outper-
forms state-of-the-art linear solvers. It remains, however, to com-
pare our method to the fast Mean Value Cloning (MVC) method
[Farbman et al. 2009], which computes mean value coordinates at
the vertices of an adaptive triangulation of the domain. In con-
trast to that method, our approach does not require triangulating
the domain and precomputing each pixel’s barycentric coordinates
to achieve interactive performance on the CPU. Furthermore, our
method is completely independent of the size of the boundary, and
avoids the somewhat sophisticated scheme that MVC employs for
hierarchical sampling of the boundary. Farbman et al. [2009] report
that after 3.6 seconds of preprocessing time, it takes 0.37 seconds
to seamlessly clone a 4.2 megapixel region (on a 2.5 MHz Athlon
CPU). In comparison, our method does not involve preprocessing,
and clones the same number of pixels in 0.15 seconds.



Figure 7: Membrane construction for seamless cloning. Top row:
image with a cloned patch superimposed; Middle row: Laplacian
membrane [Pérez et al. 2003] and the resulting seamless cloning.
Bottom row: Our membrane and the corresponding result.
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Figure 8: Gaussian filters: (a) Original Image (b) Exact convolu-
tion with a Gaussian filter (σ = 4) (c) Convolution using our ap-
proximation for the same σ . (d) Exact kernels (in red) with approx-
imate kernels (in blue). (e) exact Gaussian (in red), approximation
using 5x5 kernels (in blue), approximation using 7x7 kernels (in
green). (f) shows a magnified part of (e).

6 Gaussian kernels

In this section we demonstrate how to use convolution pyramids
to approximate convolutions with Gaussian kernels e−�x�2/2σ 2

.
Burt [1981] showed how this can be done using an O(n logn) multi-
scale scheme and described an O(n) variant that computes the result
only on a coarse grid, whose spacing is inversely proportional to the
Gaussian’s width. While the resulting values can be interpolated to
the original grid to yield an overall O(n) method, the effective ker-
nels in both variants are truncated and their support depends on the
scale σ . Using our scheme we can approximate the solution at the
original fine grid in O(n) operations without truncating the filter
support.
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Figure 9: Scattered data interpolation with two Gaussian kernels:
(a,c) A horizontal slice through the exact Gaussian (in red) and our
approximation (in blue) (b,d) A log plot of the same slice. (e) Scat-
tered data interpolation input. (f,h) Exact results corresponding to
the two Gaussians. (g,i) Our approximations.

To carry out the optimization in (4) we set the training signal a to a
sum of randomly translated and scaled delta functions, and f ∗a is
obtained by a full convolution with the target Gaussian filter. This
is intended to force the optimal kernels to achieve an adequate ap-
proximation across the entire domain, resulting in a transform that
is effectively translation-invariant. Our initial attempts to find a set
F = {h1,h2,g} that will provide a good approximation failed. The
reason is that Gaussians are rather efficient low-pass filters and, de-
pending on their scale σ , they should not contain high-frequency
components coming from the finer levels of the pyramid. These
components are introduced by the convolutions with the g kernel in
(3), and we were able to obtain considerably better results by mod-
ulating the contribution of g at each level l by a scalar weight wl .
These weights were added as additional degrees of freedom to opti-
mize over, and indeed, the optimization resulted with significantly
higher wl at the levels that are closest to the target Gaussian’s scale.
Note that different sets of kernels F must be fit to obtain Gaussian
filters of different scales.

Figure 8 shows the impulse responses of ten convolution pyramids
optimized to approximate Gaussians of ten different values of σ ,
superimposed with the exact impulse responses of the target Gaus-
sians. In these pyramids we use 5-by-5 separable kernels for h1, h2,
and g. Notice that the approximation is less accurate for certain val-
ues of σ . To improve the accuracy, we increase the allocated com-
putational budget and use 7-by-7 separable kernels instead. Figure
8(e-f) demonstrate the resulting improvement in accuracy.

The effective filters that Burt’s method and integral images produce
are truncated in space, i.e., they have a finite support that depends
on the Gaussian scale σ . While this is not a major issue when the
filtering is used for applications such as image blurring, this trun-
cation has a significant effect when the filters are used for scattered
data interpolation, such as the Shepard’s method outlined in the pre-
vious section. In this application, we need the data to propagate, in
a monotonically decreasing fashion, across the entire domain. A
truncated kernel may lead to divisions by zero in (12) or to intro-
duce abrupt transitions in the interpolated values.

Figure 9 shows our approximation of two different Gaussian fil-
ters, differing in their width. These approximations were computed
using the smaller 5-by-5 kernels. The approximation of the wider
Gaussian in (a) provides a good fit across the entire domain. For
the narrower Gaussian in (b), the approximation loses its relative
accuracy as the Gaussian reaches very low values. This may be
seen in the log plot in (d). Note however, that the approximation is



still smooth and monotonically decaying. This slower decay leads
to fuzzier transitions in the interpolated function compared to the
exact scattered data interpolation, as shown in (h) and (i).

In summary, when using wide Gaussian weight functions or oper-
ating on a denser input dataset, our method provides an efficient
and accurate approximation to scattered-data interpolation. Sparser
datasets and narrower Gaussians reveal a limitation of our approxi-
mation.

7 Discussion and Future Work

We presented a multiscale scheme that achieves accurate approxi-
mations of the convolution operations with several widely-used fil-
ters. This is done using minimal computational efforts where we
achieve large-scale non-separable filtering using small and separa-
ble kernels. We demonstrated the advantages of using our method
over existing techniques, including state-of-the-art linear solvers.
The two main ideas behind our approach are: (i) identifying the
right computational scheme, which balances operation count with
lack of translation-invariance, and (ii) optimizing filters, rather than
tackling their lack of idealness analytically. The optimized kernels
used in Sections 4 and 5 are provided in the supplementary mate-
rial and can be used out-of-the-box for the applications described
in these sections. As for the Gaussian filters, depending upon the
application, in cases where the required values of σ are known in
advance, such kernels can be computed up front.

While our paper provides new useful tools, our non-analytic ap-
proach has several fundamental limitations. While we succeeded in
approximating certain filters which are commonly used in computer
graphics, our work does not shed light on what other filters can be
approximated using this approach. Specifically, it is not yet clear
which filters can be approximated efficiently using small kernels.
Another limitation arises from the use of black-box optimization
in order to find the kernel set F . In order to gain higher accu-
racy or approximate more challenging filters, larger kernels must
be used. As the number of unknown parameters in the optimization
increases, it will be harder to expect the optimization will indeed
reach a global optimum (or even a satisfactory local one). As future
work, we intend to conduct a thorough theoretical study in order to
identify the scope of this approach in terms of filters it can approx-
imate and gain insights that, if not replace the optimization, will at
least aid its convergence.
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P., THOLLOT, J., AND SALESIN, D. 2008. Diffusion
curves: a vector representation for smooth-shaded images. ACM
Trans. Graph. 27, 3 (August), 92:1–92:8.
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