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Figure 1: We reconstruct an accurate digital representation from a halftoned color print scanned at high resolution. Our result may be viewed
at significant magnification, compresses well, and lends itself nicely to painterly re-rendering (shown on the right), as well as advanced
editing, such as decomposition into layers for a tour-into-the-picture application (see supplementary video). Input image c© Dupuis.

Abstract

We introduce a method for automated conversion of scanned color
comic books and graphical novels into a new high-fidelity rescal-
able digital representation. Since crisp black line artwork and let-
tering are the most important structural and stylistic elements in
this important genre of color illustrations, our digitization process
is geared towards faithful reconstruction of these elements. This is
a challenging task, because commercial presses perform halftoning
(screening) to approximate continuous tones and colors with over-
lapping grids of dots. Although a large number of inverse haftoning
(descreening) methods exist, they typically blur the intricate black
artwork. Our approach is specifically designed to descreen color
comics, which typically reproduce color using screened CMY inks,
but print the black artwork using non-screened solid black ink. Af-
ter separating the scanned image into three screening grids, one for
each of the CMY process inks, we use non-linear optimization to
fit a parametric model describing each grid, and simultaneously re-
cover the non-screened black ink layer, which is then vectorized.
The result of this process is a high quality, compact, and rescalable
digital representation of the original artwork.
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1 Introduction

Emerging from newspaper comic strips in the early 20th century,
comic books and graphic novels gradually evolved into a mass

medium, and have become a major part of popular culture. To-
day, these books are purchased, collected, and read by millions of
people around the globe. In fact, graphic novels are one of the
last varieties of the printed form that are still gaining in popularity
[Weiner 2010].

Despite the advent of electronic publishing and the increasing pop-
ularity of e-books, facilitated by mobile reading devices such as
Amazon’s Kindle and Apple’s iPad, most classical comic books are
still only available in their original printed form. Although some
comic book publishers offer a limited amount of classical material
as “special digital editions”, it is apparent that the creation of these
digital editions involved intensive manual intervention. This is not
surprising, since as discussed below, simply scanning such books
does not do justice to this medium, which often features intricate
and detailed line artwork and masterful coloring.

Our goal in this work is to provide a new tool for automated conver-
sion of scanned color comic books, as well as some other types of
hand-drawn color illustrations, into a new, high-fidelity rescalable
digital representation, suitable for today’s high resolution digital
reading devices. Black line artwork and lettering are the most im-
portant structural and stylistic element of comic art: black lines are
used to draw outlines, boundaries of panels and speech bubbles, and
as hatching strokes to convey shading and texture. Therefore, both
our digitization process and the resulting representation strive to
faithfully reconstruct the original line artwork and lettering, as well
as to allow significant magnification, enabling full-screen viewing
of individual panels on devices such as the 2048×1536 iPad.

The main challenge that we face is rooted in the printing process
used to produce color comics. Most printing technologies are un-
able to produce continuous color or grayscale tones, resorting in-
stead to halftoning: approximating continuous tones using various
dot patterns. Color comic books, as well as virtually all books,
newspapers, and magazines, are printed with AM halftoning, which
attempts to simulate changes in tone by varying the size of the dots
on a regular grid (clustered dot screening). Scanning such prints in-
evitably captures the halftone screen patterns. Viewing such scans
on raster displays results in Moiré patterns due to the interaction be-
tween the halftone patterns and the display raster. The effectiveness
of various image processing operations is also hindered by the pres-
ence of the halftone screen patterns. Thus, it is necessary to invert
the halftoning process, an operation also known as descreening.
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(a) Screened Input (b) Spatial filtering
(Gaussian + Median)

(c) Local extrema decomposition
[Subr et al. 2009]

(d) Vector Magic

(e) Fourier domain (Descreen 5.0) (f) GIMP plug-in (g) Training-based descreening
[Siddiqui and Bouman 2007]

(h) Our Result

Figure 2: A comparison of existing descreening and vectorization results. Input image c© Dupuis. The supplementary material contains a
comparison to an even wider array of techniques on several inputs.

Although a large number of inverse halftoning and descreening
methods have already been proposed, we show that they are not well
suited for our purposes. These techniques are typically based on ei-
ther spatial or Fourier domain filtering, and the results they produce
typically exhibit blurring of the intricate linework and sometimes
introduce artifacts in the smoothly colored regions, as may be ob-
served in Figure 2. In contrast, our approach is more specifically
designed to descreen color comics. We take advantage of the fact
that, in most color comic books, the non-black colors are printed
using screened C, M, and Y inks, while the black line art is printed
using non-screened solid black ink to better preserve its crispness
and contrast [Grais 2012]. While not all comic books use this pro-
cess (bi-tonal Japanese Manga being a notable exception), this is
the process used by the majority of North American and European
comic book publishers, including DC Comics and Marvel Comics,
which together account for over 77 percent of the US market share
[Diamond Comic Distributors 2012].

Our approach is to model the color comics printing process in a rig-
orous manner and to invert this model using non-linear optimiza-
tion. We use the Neugebauer equations to predict the appearance of
printed colors as a combination of the process CMY inks and the
color of the paper. We introduce a simple, yet flexible, parametric
model for modeling the shapes of the individual AM screening dots.
The black ink layer is modeled as a binary Markov Random Field
(MRF). Given a high-resolution scan of the printed artwork, we
employ non-linear optimization to recover the CMY color screens,
simultaneously with the non-screened black ink layer. We then ap-
ply vectorization to the black layer to extract a crisp, resolution in-
dependent representation of the linework. The reconstructed color
densities of the CMY channels are interpolated to yield a continu-
ous color image, which may be rendered as is, or by applying an
NPR filter when appropriate, to support high-definition magnifica-
tion. An example result is shown in Figure 1.

Our method produces a compact representation geared at capturing
all of the information that can be extracted from the print, within
the limitations imposed by the color channels screening grids sam-
pling rate. The size of the representation depends on the number
of printed screen dots, but not on the resolution of the scan. Thus,
the representation is quite compact and may be effectively used for
hi-fidelity compression of scanned comics. Furthermore, having
a vectorized representation of the black layer supports editing and
creatively manipulating digitized artworks, as demonstrated in the
supplementary video.

2 Background and Related Work

Comics production process

In order to gain a better understanding of our goals and approach
it is helpful to first briefly outline the traditional comics production
process [Abel and Madden 2008]. The process starts with the artists
producing line drawings for the panels on the page. Typically, the
panels are first drawn with a pencil on a large sheet of paper. This
initial drawing is then embellished or traced with black ink, using a
pen or a brush. In the American studios this is typically done by two
different artists, referred to as the penciller and the inker, while in
Europe this is more commonly done by the same artist. Letters are
typically added by another person, the letterer. The artwork is later
photographically reduced to its intended printing size and colors
are added by the colorist, originally using dyes or watercolors, and
more recently also using a computer. The colored drawing is then
separated into three (C,M,Y) color channels. These three channels
are halftoned using AM screening, resulting in a screen with a dif-
ferent angle for each channel, and printed using the corresponding
C, M, and Y process inks. The black artwork is printed using the
fourth (K) process ink, but since this is essentially a binary image,
it is printed without screening. This technique results in improved
contrast and allows the outlines of the black artwork to remain very
crisp, unlike the boundaries of the halftoned colorized regions.

Our primary challenge in this work is to reproduce the elements
printed in non-screened black ink as accurately as possible, since
the black artwork and lettering constitute the most important struc-
tural and stylistic element of comic art. However, in certain types
of comic books, the color regions are also masterfully painted, ex-
hibiting intricate shading and watercolor textures. Thus, our second
challenge is to capture these details as well, while at the same time
avoiding visible effects of the screening. Note, however, that the
color regions have essentially been band-limited by the frequencies
of the CMY screening grids, and therefore we do not attempt to
reconstruct sharp features inside these regions.

Halftoning and Descreening

As mentioned earlier, continuous tone images must typically un-
dergo a halftoning process before they can be printed. Halftoning
methods may be classified into two main groups [Kipphan 2001]:
amplitude modulation (AM) methods that respond to changes in
tone by changing the size of the dots, and frequency modulation
(FM) methods that locally adjust the density of the dots. AM
halftoning is most commonly done using clustered dot screening
[Stoffel and Moreland 1981], while FM halftoning typically em-



ploys dispersed dot screening [Bayer 1973] and error diffusion
[Floyd and Steinberg 1976]. In this work, we focus on AM halfton-
ing, which is widely used in the commercial offset printers on which
virtually all books, newspapers, and magazines are printed.

The simplest approach to eliminate or suppress the halftone patterns
is lowpass filtering, for example using a Gaussian filter. Unfortu-
nately, this approach also has the unwanted side effect of smoothing
the image details and blurring the sharp edges. According to online
tutorials [Chastain 2012], somewhat better results may be obtained
using a combination of Gaussian blurring and median filtering, fol-
lowed by unsharp masking using fine-tuned parameters (Figure 2b).
Another option, that might appear promising at first glance, is to
apply a state-of-the-art edge-preserving filter (e.g., [Farbman et al.
2008; Subr et al. 2009]), but in our experiments we found the results
unsatisfactory, as can be seen in Figure 2c. Attempting to vectorize
the scanned image (either directly or after lowpass filtering) intro-
duces contouring and also fails to faithfully reconstruct the original
line art, as seen in Figure 2d.

The periodic dot grids employed in AM screening produce spikes
at specific frequencies, suggesting that it might be more effective
to perform the filtering in the frequency domain. For example,
both the commercially available Descreen 5.0 plug-in for Photo-
shop [Sattva 2011], and the free plug-in for GIMP [2011] oper-
ate in the Fourier domain and claim to remove the screen pattern
while preserving image detail (Figures 2e-f). Stanger et al. [2011]
also operate in the frequency domain by constructing and apply-
ing a swiss cheese filter: band-reject filter with Gaussian-shaped
holes around frequencies that arise from the halftone patterns of
the different inks. Our technique, however, is capable of producing
crisper, more accurate reconstructions, as shown in Figure 2h.

Many other research papers and patents address descreening and
inverse halftoning. A good survey may be found in a recent pa-
per by Siddiqui and Bouman [2010]. According to this survey,
representative methods include inverse halftoning via projection
methods [Wong 1995], via MAP estimation [Stevenson 1997],
segmentation-based descreening [Jaimes et al. 1998], gradient-
based adaptive filtering [Kite et al. 2000], wavelet-based descreen-
ing [Neelamani et al. 2000], and training-based descreening [Sid-
diqui and Bouman 2007]. However, most of these previous meth-
ods aim to avoid the Moiré patterns that emerge when attempting
to display or print scans of halftoned prints, and do not account for
the specific characteristics of the color comics printing process. In
contrast, our goal is to produce a rescalable, resolution independent
representation suitable for digital manipulation and viewing, and
our approach is tailored to a specific printing process.

Stevenson [Stevenson 1997] posed the inverse halftoning problem
as one of reconstruction. The problem is solved using nonlinear
optimization, assuming knowledge of the halftoning process. A
non-Gaussian MRF is used, which resembles the smoothness term
used in edge-preserving filtering techniques [Farbman et al. 2008].
However, this approach is designed to reconstruct a grayscale image
from a binary halftone, and is not suited for color halftone prints
where several screening grids overlap.

The Training-Based Descreening method [Siddiqui and Bouman
2007] appears to be the state-of-the-art among the recently pub-
lished descreening methods. This method essentially applies a
modified bilateral filter [Smith and Brady 1997] using a denoised
version of the grayscale channel to compute the range differences.
The denoising stage involves training to compute the denoising
parameters that perform optimally for each type of printer. This
method produces good results for reprinting a scanned print (at the
same size), but it does not attempt to extract resolution-independent
primitives as we do. Thus, it is not well suited for our goals, as
shown in Figure 2g.

Input: three crops from the same panel

Luma thresholding: any single threshold value fails

Signed distance to black color model thresholded

Naı̈ve MRF optimization

Our Result

Figure 3: A number of simpler approaches we tried fail to accu-
rately extract the black ink layer (rows 2–4). The black color model
was built from the colors found in a small fully black rectangle. The
naı̈ve MRF optimization uses the signed distance to the color model
as data term and a Potts smoothness term. We obtain our results us-
ing a refined data term and interleaving black estimation with dot
recovery (Section 6).

3 Overview

Given an RGB scan of a printed comic book page, our goal is to
reconstruct the original continuous artwork from which the print
was produced. As explained earlier, this artwork actually consists
of two separate parts: (a) the black artwork, including boundaries,
contours, hatching strokes, and lettering, all of which is printed
non-screened using the process black ink. (b) the colors that were
added to the drawing by the colorist, all of which are printed using
screened C, M, and Y inks.

Thus, our goal translates to the task of inverting the printing pro-
cess and decomposing the RGB scan into four channels: the non-
screened black ink layer, which may then be vectorized to yield a
resolution-independent representation of the black artwork, and the
CMY color screens from which continuous colors may be recon-
structed in a number of ways. All of this should be done in a man-
ner that is robust to the typical imperfections in both the printing
and the scanning processes.

It should be noted that accurate extraction of the black ink layer is
very challenging. The difficulty is rooted at the color ambiguities
commonly found in printed materials. The density of the black ink
across the print tends to be non-uniform, and it is often the case
that pixels and small areas where all three CMY inks overlap are
as dark, or even darker than some areas covered by black ink. This
is particularly problematic in areas where such CMY overlaps are
adjoining black regions, as demonstrated in Figure 3.



We have initially experimented with a number of approaches for
first separating out the black ink and then descreening the underly-
ing color channels. Specifically, we attempted thresholding, train-
ing classifiers for detecting black ink pixels, modeling the black ink
layer as an MRF with simple data and smoothness terms, and us-
ing heuristics based on analyzing straight line profiles. However,
none of the above succeeded to extract the black ink layer in a suf-
ficiently accurate manner, as shown in rows 2-4 of Figure 3. As
demonstrated in Figure 2, we also attempted to descreen the images
without explicitly extracting the black ink layer using a variety of
filters and existing descreening approaches.

Having failed to decouple the process of black layer extraction from
color reconstruction, we gravitated towards a more sophisticated
solution, which boils down to performing both tasks simultaneously
using joint non-linear optimization, as described below.

Using the Neugebauer trilinear model for printed color formation
[Neugebauer 1937], we first estimate the screened ink layers for
the C, M, and Y inks, and detect the dot locations in each screen.
Next, we apply numerical optimization in order to recover the cen-
ters and the shapes of the individual AM dots, while simultaneously
recovering a binary mask indicating the presence of black (K) ink.
Finally, we vectorize the binary black ink mask, and reconstruct a
continuous image for each of the CMY channels by interpolation
of the recovered dot sizes, since these dot sizes encode the local
intensity of the corresponding ink.

In summary, the outline of our method is:
1. Estimate the primaries for the Neugebauer trilinear model and

compute a CMY color separation by inverting the Neugebauer
equation (Section 4).

2. Detect the dot grid for each of the CMY channels (Section 5).
3. Use optimization to jointly recover a binary black ink mask

and the individual dot shapes (Section 6).
4. Vectorize the black ink mask and filter the color channels

(Section 7).

4 Recovering the CMY separation

4.1 Estimating the Neugebauer primaries

The RGB color resulting from a combination of halftones printed
using cyan, magenta, and yellow inks is commonly predicted using
the Neugebauer equations [Kipphan 2001]:

crgb = cw(1−αc)(1−αm)(1−αy)+ ccαc(1−αm)(1−αy)

+ cm(1−αc)αm(1−αy)+ cy(1−αc)(1−αm)αy

+ ccmαcαm(1−αy)+ ccyαc(1−αm)αy

+ cmy(1−αc)αmαy + ccmyαcαmαy (1)

The eight coefficients cw,cc,cm,cy,ccm,ccy,cmy,ccmy, referred to
as the Neugenbauer primaries, specify the RGB color of the pa-
per, the individual inks, and their various combinations. The terms
αc,αm,αy denote the respective ink coverages.

We use a simple automatic procedure to estimate all eight Neu-
genbauer primaries for each page (in our experience there is some
variability between different pages of the same book). The idea is
to robustly estimate the extrema of the page’s color gamut. For ex-
ample, to estimate the color of the cyan primary we compute the
maximal value of the product (1− r) ·g ·b over the entire page, and
average the colors of those pixels for which this product is within 1
percent from the maximal value. The other primaries are estimated
in a similar fashion. In the supplementary material we include a
quantitative evaluation of this technique on ground truth data.

4.2 Inverting the Neugenbauer equation

Our task is now to estimate the CMY color separation that could
produce the scanned RGB image using the Neugenbauer equations

with the recovered primaries. To facilitate this task we compute
a three-dimensional lookup table that implements the inverse of
Eq. (1), i.e., find αc,αm,αy given crgb. Note that this lookup ta-
ble has entries for both in-gamut and out-of-gamut colors, since
the scanned input images always contain some out-of-gamut pixels
(e.g., many of the pixels covered by black ink will be out of gamut).

Mahy and Delabastita [1996] show that Eq. (1) can be inverted by
relating it to a hexic polynomial whose roots determine the pos-
sible values for αc. The remaining coefficients, αm and αy, are
then found through algebraic manipulation. The polynomial has up
to six solutions, so, the inverse of Eq. (1) is not uniquely defined,
which could result in non-smooth separations making the subse-
quent dot shape fitting difficult. Some of these solutions might also
not be physically meaningful, e.g. by having a non-zero imaginary
component, or α < 0 or α > 1. In practice, however, this does
not seem an issue since for all scans we tried almost all non-black
pixels had a unique physically meaningful solution.

We initialize the lookup table by setting all entries that have ex-
actly one physically meaningful solution, and fill the remaining en-
tries using a smooth membrane interpolation. This is accomplished
by iteratively replacing every entry by the average of its six neigh-
bors (“Laplacian smoothing”). The smoothing is performed in a
coarse-to-fine manner. Computing a 1003 lookup table takes about
a second. Once the table is complete we use it to convert each of
the pixels in the input RGB scan. An example color separation is
shown in Figure 5.

5 Grid detection

In this stage, our goal is to locate the centers of the dots in each
of the separated CMY channels, taking into account that these dots
were originally supposed to form a regular grid. Park et al. [2009]
describe a method for detecting 2D wallpaper patterns in real pho-
tographs using mean-shift belief propagation. However, they face a
much more challenging lattice reconstruction problem and the per-
formance of their algorithm makes it impractical for recovery of
large screening grids. Liu [1996] recovers the halftone lattice pa-
rameters in the Fourier domain, but his method does not seem to
account for grid distortions. Other parametric solutions encounter
the same difficulty. Thus, we propose our own simple and efficient
image-space approach. We start by detecting local maxima and
minima in each channel and then use least squares to recover the
grid explicitly accounting for the presence of a smooth deformation
field, which may arise in practice due to imperfections in both the
printing and the scanning processes.

Local extrema detection: Since the input images (and hence the
computed separations) contain a significant amount of noise, we
first smooth them with a Gaussian filter. The filter width is set to
0.25 of the grid spacing. We detect both local minima and local
maxima in each channel image, because in areas where the dots are
large enough they blend with each other. In such areas it is easier
to recover the grid by identifying the gaps between the dots (local
minima), rather than the dot centers (local maxima).

Local extrema pruning: Local extrema might still fire in relatively
flat regions. Therefore, we prune the detected extrema by fitting
the region surrounding an extremum at (xe,ye) with a paraboloid
of the form A + B

(
(x− xe)

2 +(y− ye)
2), and keeping only the

extrema for which the paraboloid is sufficiently pronounced, i.e.
|B|> τmag = 0.003. Figure 4b shows the results of extrema detec-
tion and pruning.

Grid fitting: Next, we iteratively fit a grid to the extrema that sur-
vived the pruning stage. We must cope with noise that still remains
in the extrema location, and with erroneous extrema that survived
the pruning (e.g., in a gap between nearby black lines). Further-
more, we must be able to handle not perfectly regular grids, since
smooth deformations occur across the paper due to imperfect print-



(a) Input (b) Extrema (c) 1st iteration (radius 25 pixels) (d) 2nd iteration (radius 75 pixels)

Figure 4: Grid detection. (a) Input image. (b) Pruned extrema are shown as green (maxima) and red (minima) dots. (c–d) Two intermediate
results from the grid optimization (minima are omitted here for clarity). The anchor ~a is shown as a yellow dot, and the spanning vectors~s
and~s⊥ as purple lines. The horizon radius is shown in yellow. Note the better fitting of dots away from the anchor in (d).

ing and scanning. Finally, the grids are not complete, since there
may be large white or black regions.

To overcome these difficulties, we use a parametric model for the
grid that explicitly incorporates a smooth deformation field, and
formulate the fitting as an energy minimization problem. Given a
current guess for the parameters of the grid and its deformation field
we seek to optimize the following high level goals:

• Every maximum (dot) should be close to a grid point
• Every minimum (gap) should be close to a grid cell center
• The grid deformations should be small and smooth

We define a regular (undeformed) grid by an anchor point ~a and a
spanning vector~s. A grid point ~p with grid coordinates (x,y) is then
given by:

~p =~a+ x~s+ y~s⊥, (2)

where~s⊥ is perpendicular to~s. We model the deformation field as a
2D offset ~d at every N-th dot in each dimension (N = 50 in our
implementation), with bilinearly interpolated offsets in between.
Therefore, (2) becomes

~p =~a+ x~s+ y~s⊥+∑
k

wk~dk, (3)

where wk are the bilinear coefficients, at most four of which are
non-zero for a given point (x,y).

We can now construct a linear system with the goals stated earlier
expressed as soft constraints. For this, we assume that we know
the grid coordinates (xi,yi) for every extremum i. Maxima (dots)
have integer grid coordinates and minima (gaps) have half-integer
coordinates. For every extremum we generate one linear equation
of the form given in (3), with~a,~s, and ~dk as the unknowns.

Next, we add an equation ~dk = 0 for every deformation grid point k
within the image domain. To enforce smooth deformations we also
add an equation ~dk− ~dl = 0 for every pair of neighboring deforma-
tion points k and l. This results in a rectangular (overdetermined)
sparse linear system A f = b that can be solved using standard nu-
merical methods. In our implementation we solve the associated
normal equation ATA f = AT b using Cholesky decomposition.

Initialization: In order to find good initial values for ~a and ~s, we
find the maxima with the most “regular” neighborhood, i.e. the four
closest other maxima/minima are at the same distance and form 90◦
angles. We set~a to the most regular maximum, and~s to the average
distance to the neighboring maxima.

We should note that grid point assignment is extremely sensitive to
the accuracy of the spanning vector ~s. Initially, extrema far away
from the anchor are likely to receive wrong coordinates. We avoid

this issue by solving the problem in an iterative fashion, where at
each iteration we only consider extrema within some limited radius
around the anchor. Each iteration slightly improves the accuracy
of the anchor, the spanning vector and the deformation grid. In
our implementation we start with a radius of 25 pixels and increase
it in steps of 50 until the entire image is covered (Figure 4c–d).
The supplementary material contains a quantitative evaluation of
the described grid detection algorithm.

Pseudocode: The grid fitting process is summarized below:
1: Input: initial~a and~s estimates; all pruned extrema
2: radius← 25, ~dk← 0,∀k
3: repeat
4: For each maximum (minimum) find closest grid point with
5: integer (half-integer) coordinates (x,y), given the cur-
6: rent~a,~s, ~dk estimates
7: Construct matrix A and solve for new~a,~s, ~dk
8: radius← radius+50
9: until all extrema are inside radius

6 Descreening and black ink recovery

This section describes the core of our method: explicit and precise
extraction of the black ink layer, simultaneously with the recon-
struction of the continuous CMY color channels. This is done by
using a detailed (forward) model of the AM screening process and
then estimating the parameters of this model so as to match the in-
put image. Our model comprises two parts:

1. Dot model. We use a radially symmetric model with 6 degrees
of freedom to fit the shape of the dot at each grid location.
Thus, a complete parametric model is obtained for each of the
recovered CMY separations.

2. Black mask. A binary mask defined over the entire image
specifies for each pixel whether it is covered by black ink.

We regularize the model in several ways enforcing basic constraints
of the printing process. Specifically, the degrees of freedom of
the dot profiles are constrained to produce non-negative monotonic
curves, and the black ink layer has a smoothness term.

We alternate between black ink assignment (Section 6.1) and dot
shape estimation (Section 6.2). Pixels classified as black are ex-
cluded from consideration in the dot profile estimation. This leads
to accurately recovering even the shapes of dots that are partly cov-
ered by black ink. This is important because it enables recover-
ing correct colors near black lines (pockets of color surrounded by
black are particularly difficult for other algorithms). We initialize
the black ink mask by conservatively detecting sufficiently large
clusters of dark pixels (either disk-shaped or line-shaped). An ex-
ample is shown in Figure 5.



Input CMY Separation Initial black mask Final black mask Reconstructed CMY dots

Figure 5: Descreening and black ink recovery: given the separation of the input into CMY channels, we conservatively initialize the black
ink mask. Alternating between black ink assignment and dot shape estimation, we converge to the final black ink mask and CMY dot grids.
See the supplementary materials for additional visualizations.

6.1 Black ink assignment

At each stage of the iterative optimization process outlined above
we recompute the binary black ink mask using binary-label MRF
optimization. The MRF is defined on a graph with the set of pixels
P as nodes and all pairs of adjacent pixels on a 4-connected grid
denoted by Npix as edges. We solve the problem

argmin
{βi}

∑
i∈P

Ek
i (βi)+λ

sm
∑

(i, j)∈Npix

Ek
i j(βi,β j), (4)

where βi is a binary variable, whose value is 1 for a black pixel
and 0 otherwise. The unary term Ek

i , defined below, measures the
penalty of assigning the label βi to pixel i, while the pairwise term
Ek

i j encourages smoothness by penalizing assigning different labels
to neighboring pixel: Ek

i j(βi,β j) is 1 when βi = β j and 0 otherwise.
λ sm = 0.3 is a regularization parameter.

The unary term takes the following form:

Ek
i (βi) = (1−βi) ∑

k∈{r,b,g}
max

(
0, c̃k

i − ck
i

)
+

βi ∑
k∈{r,b,g}

max
(

0,ck
i − cblack

)
,

(5)

where c̃i is the RGB color predicted by current dot model (com-
puted using Eq. 1), while ci is the scanned color. The first term
penalizes color assignment for pixels where the scanned color is
darker than what the dot model predicts. The second term penal-
izes assigning black to bright pixels. Since in some scans the black
ink can take on fairly high values we subtract a baseline value cblack.
We set it to the darkest channel value found within the initially de-
tected black clusters mentioned earlier.

As shown by Kolmogorov and Zabih [2004], our MRF energy func-
tion (4) is graph-representable, meaning that its exact global mini-
mum may be found by computing the minimum s-t cut in the cor-
responding graph, which we do using the well-known algorithm of
Boykov et al. [2001].

6.2 Dot shape estimation

As mentioned earlier, our goal here is to fit a parametric model that
describes the shape of the dot at each grid location. This is done
independently for each of the CMY channels using the separations
computed as described in Section 4.2.

The actual dot shapes we encountered in scanned prints are rather
varied, and we were unable to obtain good results using a simple
parametric model, such as a disk or a Gaussian. After some exper-
imentation we chose modeling the dots as radially symmetric, with
the profile consisting of two C1 connected cubic Hermite splines.
This model is able to approximate the observed dot shapes well us-
ing a total of six degrees of freedom.

Variable parameters:
y0,x1,y1, t1,x2, t2

Hard Constraints:

x
0 ≤ y0≤y1 ≤ 1

−∞ ≤ t1 ≤ 0
0 ≤ 1 ≤ x2 ≤ xmax

−∞ ≤ t2 ≤ 0

(x0 = 0,y0, t0 = 0)

(x1,y1, t1)

(x2,y2 = 0, t2)

Figure 6: Our model for the profile of a radially symmetric dot.

As shown in Figure 6, each of the three control points has three
parameters specifying its position and tangent. Some of these are
locked leaving six free parameters. These parameters are further
subject to hard constraints (see Figure 6) to enforce physically re-
alizable dot shapes.

Our goal is now to recover the parameters for all dots such that
each of the separated CMY channels is reproduced as accurately as
possible, subject to a number of regularization constraints. Specifi-
cally, for each channel we minimize the following energy function:

Edots = Efit +λ
shapeEshape +λ

regEreg (6)

The term Efit captures how well we fit the pixels that are not covered
by black ink:

Efit = ∑
i∈P

(1−βi)
∥∥∥si−min

(
1,∑

j
f j
(
di j
))∥∥∥ (7)

Here si is the value of the separation at pixel i and f j is the profile
function of dot j. di j is the distance between pixel i and the cen-
ter of dot j. Contributions of overlapping dots saturate to one to
keep things physically meaningful. The next term softly enforces
physical plausibility:

Eshape = ∑k∈D max
(
0,mint fk (t)

)2
+

∑k∈D max
(
0,maxt fk (t)−1

)2
+

∑k∈D max
(
0,maxt

d fk
dt (t)

)2
,

(8)

where D is the set of dots. The subterms enforce positivity, be-
ing smaller than one, and having a negative derivative, respectively.
Note that it is not enough to enforce only the locations of control
points using hard constraints, since the curve can take on negative
values or positive tangents between the control points. However,
simple analytical expressions exist for each of the constraints in
Eq. 8. We found that making these constraints hard hurts the con-
vergence of the optimization greatly and often gets points stuck be-
hind a high energy barrier which prevents reaching a low energy
configuration. Therefore, they are incorporated as soft constraints.



Finally, the Ereg term encourages spatial smoothness, which is par-
ticularly important for recovering dots that are covered by black
ink:

Ereg = ∑
(i, j)∈Ndots

∫ xmax

0

∥∥ fi(t)− f j(t)
∥∥dt, (9)

where Ndots is the set of neighboring dot pairs. We set the balancing
parameters in Eq. 6 to λ shape = 100 and λ reg = 1.

In summary, Eq. 6 gives rise to a non-linear system with six vari-
ables per dot. However, every dot is only coupled with its direct
neighbors. Thus, instead of optimizing all of the dots at once, we
solve a collection of small optimization problems: in each problem
all the variables except those of a single dot are fixed. Since dots
that are more than two grid locations away from each other have
no interaction whatsoever, this computation can be trivially paral-
lelized on multi-core machines.

To solve the system we use the BFGS algorithm [Nocedal and
Wright 2000], as implemented in the GNU Scientific Library1. The
hard constraints are enforced using logarithmic barrier functions
[Nocedal and Wright 2000]. Even though the error surface might
contain local minima, we have not observed problems with the pro-
cess getting stuck in practice. In the accompanying video and the
supplementary materials we demonstrate convergence from multi-
ple starting points.

We generated all our results using 5 iterations of interleaved black
ink recovery and dot shape optimization. Within each dot optimiza-
tion phase, we iterate 10 times over all the dots, optimizing each dot
individually.

7 Vectorization and Rendering

The result of the previous section is a binary black ink mask, and
three angled grids of parameterized dot profiles.

To vectorize the binary black ink mask, we first convert the image
into a 2D mesh by generating two triangles for each pixel. The
triangles are augmented with an attribute that specifies whether it
came from a black or non-black pixel. We simplify the mesh us-
ing the progressive meshes algorithm [Hoppe 1996] enforcing a
maximum residual of one pixel. We prevent vertices on the mesh
boundary from being collapsed to preserve the rectangular shape
of the panel. Furthermore, we prevent any topology changes with
respect to the black / non-black regions. Finally, we improve the
smoothness of the obtained mesh by replacing edges between black
/ non-black regions with cubic spline curves. The resulting vector
representation is resolution independent and can be rendered using
any standard graphics package.

Although we recover accurate dot shapes in our descreening pro-
cess, our eventual goal is to remove the screening pattern and ren-
der a continuous color image. We compute the magnitude of every
dot by integrating its profile function. Depending on the quality of
the scanned print, the result may still contain some residual noise,
which we reduce by applying bilateral filtering to the dot magni-
tudes. A continuous CMY image can now be reconstructed by sim-
ply interpolating the computed dot magnitudes. Finally, this image
is converted to RGB using the forward Neugenbauer equation.

The reconstructed color image may be displayed overlaid with the
reconstructed black artwork. This results in a smooth color illus-
tration look, which works well for certain kinds of comic books,
such as the North American comics that often use piecewise con-
stant colors or smooth color gradients. On the other hand, some
of the Franco-Belgian comics we experimented with are more in-
tricately and masterfully colored with watercolor. In this case, we
found that applying a non-photorealistic painterly filter to the recon-
structed image yields a more compelling result that is better suited

1http://www.gnu.org/software/gsl

for magnified viewing, which is one of our goals. To apply the
painterly rendering filter we used the built-in Auto-Paint feature of
Corel Painter 12. The filter is applied separately to the RGB color
image and to the black artwork, which is then composited on top
of the color image. This technique was used to generate the right
image in Figure 1, as well as the top left result in Figure 10.

8 Results

In order to validate and stress-test our method we scanned an origi-
nal hand-drawn illustration which was then digitally color separated
and screened. The screenings were subjected to a variety of degra-
dations, such as the addition of various amounts of Gaussian noise,
raising the grayscale level of the black channel, and applying a ge-
ometric distortion to the CMY screens. We applied our method to
each of these inputs and measured the accuracy of the recovered
primaries, dot grids, and the recovered CMY and K channels. Fig-
ure 7 demonstrates the robustness and graceful degradation of our
method’s accuracy. The full set of results is included in the supple-
mentary materials.

We also applied our method to a large number of scanned pages
from a variety of comic books, including North American comic
books: Batman (by DC Comics), Iron Man (by Marvel Comics),
and Bone, as well as several famous Franco-Belgian comics: Tintin,
Jeremiah, and Thorgal. Due to space limitations we can only show a
few crops in the paper (see Figure 10) in order to reveal the intricate
details that are recovered by our algorithm. In Figure 2 we showed a
comparison to alternative methods for removing the screening pat-
tern. In the supplementary materials we include a more extensive
comparison to a wider range of methods, and we also show several
additional full panel results.

Our technique is applicable not only to comic books, but also
to other types of color illustrations that are printed using a non-
screened black ink layer. Figure 10 shows an example of a techni-
cal illustration from a psychology textbook, and a color illustration
from an old children’s book is included in the supplementary mate-
rials.

Our optimization needs the input scans to be of sufficient resolution
such that the dots become clearly distinguishable. For all inputs
we have tried a scan resolution of 1200dpi was sufficient. The dot
spacing is around 6–9 pixels at this resolution. Our current imple-
mentation is not highly optimized; descreening a panel scanned at
3545×2010 pixels, for example, takes about 10-12 minutes on a 2.5
GHz Intel Xeon CPU. However, the long runtime is compensated
by the high fidelity crisp reconstruction of the non-screened black
ink channel. Since this channel usually contains much finer detail
than the color channels and we are able to recover it faithfully, our
vectorized results are suitable even for significant magnifications
(Figure 10).

Compression: Our method recovers all the details present in the
input in parametric form, e.g. the shape of every dot and every
black line. Since the grid of screening dots is much sparser than the
input pixel grid our representation can be highly compressed.

For rendering images we do not need the exact dot shapes, but re-
quire only their magnitudes (Section 7). We store these magnitudes
as three grayscale images, one for each CMY channel. We quantize
these images to 8 bits and use standard image coding techniques to
compress them. Using the JPEG XR image coder, each of these im-
ages compresses to around 35–50 kb for a typical comic book panel
(we achieve high compression since these images are typically very
smooth). We store the control points for the black ink splines in a
binary file which takes around 100–120k.

Our representation decompresses almost instantaneously and en-
ables high fidelity rendering. In Figure 8 we compare to standard
JPEG compression tuned to either similar quality or similar file size.
The former yields a much larger file size compared to our represen-
tation, while the latter exhibits significant compression artifacts.
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Figure 7: Validation and stress testing our method with ground truth. A hand-drawn illustration was scanned and digitally screened simulat-
ing a variety of degradation conditions: adding noise, raising the black level, and introducing geometric distortions. The plots on the right
show that our black ink recovery is robust and degrades gracefully. See the supplementary materials for a more exhaustive analysis.
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Figure 8: Our representation is highly compressible without visible degradation. We compare to JPEG encoding tuned to either match our
quality or file size. Input image c© Rosinski – Van Hamme – Editions Du Lombard (Dargaud-Lombard s.a.)

Editing: Our representation lends itself for creative manipulations
of digitized comics art. Since the black channel is binary exhibit-
ing crisp contours and the recovered colors are very smooth, region
selection, which is the foundation for many editing tasks, becomes
easy.

As proof of concept we implemented a scribble-based interface to
drive a simple multi-label graph cut segmentation. The obtained
segmentation requires only minor manual touch-ups since the re-
covered boundaries perfectly trace the strong black/color edges.
We then moved the segments onto separate image planes where we
completed them using Adobe Photoshop’s image completion tools.
The entire process took less than half an hour.

We assigned each layer a certain depth and implemented an inter-
active pan-and-zoom interface where we render the layers with par-
allax. Figure 9 illustrates this process and shows a novel view that
was generated in this manner. Please refer to the supplementary
material for a video capture from an interactive session.

Limitations: We have tried our method on about 100 different in-
puts and did not encounter any “catastrophic” failures. However,
one limitation of our method is that it sometimes misses very faint
black features, such as small dots or very thin lines. In this case
the algorithm will compensate by adjusting the dots to recover the
feature and it will appear more blurry in the result. This artifact can
be seen when carefully comparing our results with the input (e.g.
using the interactive viewer in the supplementary material). Also,

on rare occasions our detected grids are locally not well aligned
with the true grid, in which case the color and black reconstruction
suffers.

Another problem (that we share with other methods) is that we rely
on inputs to be printed on relatively high quality paper. In some
cheap paperback books we experimented with, the printing on the
back side of the page showed through significantly and ended up
being reconstructed faintly. However, the bilateral denoising of the
color channels (Section 7) helps reduce such artifacts. Another is-
sue with low grade paper is that black lines appear less sharp and
clean, sometimes leading to rougher looking reconstructions.

9 Conclusion

Over the last few decades, nearly all media (e.g., audio, images,
video, text, CAD) have been transitioning to digital representations.
There are of course countless works that predate this transition. One
key challenge is that analog representations in physical media may
be subject not only to noise but to other artifacts specific to each
physical representation. In this work we considered the challeng-
ing case of printed color illustrations, and in particular, comics art.
We have described a new tool that enables such illustrations to be
digitized easily yet faithfully, resulting in a compact, rescalable rep-
resentation.

In the future we plan to explore the editing possibilities that our
work opens up. A particularly exciting direction are animations,
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Figure 9: Proof of concept editing application. The layer mask image shows the graph cut based segmentation result. Input image c©
Rosinski – Van Hamme – Editions Du Lombard (Dargaud-Lombard s.a.)

e.g., moving characters or ambient motions for trees or clouds. We
also plan to look into semantic analysis of comic panels, which is
much easier once we accurately segmented the lines, which are the
main structural elements in this type of art.
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Figure 10: A few sample crops from our many results (please zoom in to examine detail). Top left: a crop from Jeremiah rendered using an
NPR filter (input c© Dupuis). The quality of our reconstruction enables significant magnification (the top part is about 4 times larger than the
input in the original scan, and the zoomed view below has even higher magnification). Top right: a crop from a psychology textbook diagram
(input c© Philip G. Zimbardo): the right half of the brain is halftoned, while the left is continuous. Bottom left: a crop from Iron Man (input
c© Marvel Comics). Bottom right: a crop from Bone (input c© Jeff Smith).


