
Optimizing Color Consistency in Photo Collections

Yoav HaCohen
Hebrew University

Eli Shechtman
Adobe Research

Dan B Goldman
Adobe Research

Dani Lischinski
Hebrew University

Figure 1: Editing a photo collection with our method. First row: input images exhibiting inconsistent appearance. Red arrows indicate pairs
of images that were detected to share content. Second row: automatically induced consistent appearance. Third row: after propagating user
adjustment of the leftmost photo (photos with similar content are affected more strongly). Fourth row: propagation of an adjustment done to
the sixth photo. Previous adjustment remains as constraint. (Note: adjustments are deliberately exaggerated in this example.)

Abstract
With dozens or even hundreds of photos in today’s digital photo
albums, editing an entire album can be a daunting task. Existing
automatic tools operate on individual photos without ensuring con-
sistency of appearance between photographs that share content. In
this paper, we present a new method for consistent editing of photo
collections. Our method automatically enforces consistent appear-
ance of images that share content without any user input. When
the user does make changes to selected images, these changes au-
tomatically propagate to other images in the collection, while still
maintaining as much consistency as possible. This makes it pos-
sible to interactively adjust an entire photo album in a consistent
manner by manipulating only a few images.

Our method operates by efficiently constructing a graph with edges
linking photo pairs that share content. Consistent appearance of
connected photos is achieved by globally optimizing a quadratic
cost function over the entire graph, treating user-specified edits as
constraints in the optimization. The optimization is fast enough to
provide interactive visual feedback to the user. We demonstrate the
usefulness of our approach using a number of personal and profes-
sional photo collections, as well as internet collections.

Links: DL PDF WEB

1 Introduction
The ease with which we are able to take digital photographs
presents both an opportunity and a challenge. We capture dozens
to hundreds of images – often from multiple cameras – during a
single event such as a day hike or a dinner party. Many of these im-
ages could clearly benefit from adjustments to color and contrast,
but manually adjusting each photo is hardly an option. Automatic
enhancement tools exist, but they operate on each image indepen-
dently, without attempting to ensure consistency of appearance be-
tween photographs depicting the same subject or scene.

Inconsistent appearance of photos in a personal album may result
from changes in lighting conditions, from different camera settings,
or from different cameras altogether, where such inconsistencies
become even more apparent. Professional photographers may avoid
these issues by controlling the lighting, shooting with carefully cal-
ibrated, manually set fixed camera settings, and using manual dark-
room post processing1. However, these solutions require profes-
sional equipment, skill, and a significant amount of time for large
photo albums.

In this paper, we present a new method for automatically ensur-
ing color consistency in typical real-world personal photo albums,
where photographs depict some common content but may differ in
color, lighting conditions, viewpoint and non-rigid geometric trans-
formation of objects. Our method may be used to induce consistent
appearance in such albums without any user input. Should the user
choose to adjust color or tone in selected photographs, our method
automatically propagates these appearance changes to other pho-
tographs that share the same content. In the process, we attempt
to balance between achieving color consistency and preserving the
dynamic range and natural appearance of individual photos. A few
snapshots from an interactive session with our method are shown

1For example, see discussions in the following photography forums:
http://tinyurl.com/{cnnwfo6, cqzuln5, c76787o}

http://doi.acm.org/10.1145/2461912.2461997
http://portal.acm.org/ft_gateway.cfm?id=2461997&type=pdf
http://www.cs.huji.ac.il/labs/cglab/projects/collections
http://tinyurl.com/cnnwfo6
http://tinyurl.com/cqzuln5
http://tinyurl.com/c76787o

in Fig. 1. Enforcing consistency transforms the original images in
the top row into those shown in the second row. Next, adjusting the
leftmost photo and setting it as reference instantly propagates the
red cast to the other photos in the set (third row). Photos that share
more content with the reference photo are affected more strongly.
Finally, adjusting the sixth photo propagates the green-cyan cast to
the other photos (third row). The leftmost reference image remains
constrained, and thus the second and third photos on the left re-
main almost unchanged, as they share much more content with that
reference photo.

Our approach leverages recent developments in finding dense cor-
respondences and transferring color between real-world photo pairs
[HaCohen et al. 2011]. To extend this approach to photo albums,
we construct a match graph in which the photos are represented
by nodes and shared content is represented by edges. Each edge is
assigned a weight based on the size of the corresponding regions
between the two photos and the quality of the correspondence.
Consistency of appearance between connected photos is achieved
by minimizing a quadratic cost function over the entire graph. A
number of regularization terms and constraints are introduced in
order to balance between color consistency across photos, preserv-
ing the dynamic range of each photo, and limiting deviations from
the original appearance. These make the system solvable even in
the absence of user-provided constraints. The cost function may be
efficiently re-optimized after every adjustment to any single photo
in the album, thereby propagating the edit to the entire album and
providing visual feedback at interactive rates.

2 Related Work
Automatic Enhancement

Many tools exist for automatic enhancement of photographs. For
example, basic contrast enhancement may be achieved through
histogram equalization, or by stretching the tonal range (e.g., the
Auto Levels tool in Adobe Photoshop). Automatic white balance
is commonly achieved by using some assumptions about the scene
(e.g., Grey-World, White-Patch and Grey-Edge [van de Weijer et al.
2007]), or using a skin color model (e.g., in Apple’s Aperture). De-
spite the simplicity of some of these tools, they are often quite effec-
tive and appear to be in use in several popular commercial software
packages, alongside an array of other enhancement presets. How-
ever, these tools operate on each image independently and will not,
in general, result in consistent appearance.

Appearance Propagation

Many researchers have studied the problem of color transfer be-
tween images (e.g., [Reinhard et al. 2001; Pitié et al. 2007; Ka-
garlitsky et al. 2009; An and Pellacini 2010; Oskam et al. 2012;
HaCohen et al. 2011]). However, these methods consider a pair of
images at a time, and do not have a natural extension for achieving
consistent appearance across a set of images. In this work we are
interested in propagating color from multiple source photos to mul-
tiple target photos (where any image may serve as either a source
or as a target) and achieve a consistent appearance across the entire
set.

Snavely et al. [2008] perform appearance stabilization in short
photo sequences of geometrically aligned static scenes (e.g., monu-
ments or building facades) by accumulating an affine color transfor-
mation matrix between successive photos. Farbman and Lischin-
ski [2011] report that error accumulation prevents such an ap-
proach from scaling to long sequences of video frames and sug-
gest a non-parametric approach for that task, where color differ-
ences are first computed using approximate correspondences and
then interpolated in color space. Levin et al. [2004] use optical

flow to propagate chromaticity information through a sequence of
grayscale video frames from user-specified constraints (color scrib-
bles). These methods are not applicable to general photo collec-
tions, which do not lend themselves to optical flow and may contain
non-rigidly transforming content.

Dale et al. [2009] and Joshi et al. [2010] correct the colors of a
target photo based on its similarities to multiple examples in un-
ordered photo collections (online or personal). However, these
methods do not scale well to more complex transformations such
as general tone curves, and require co-segmentation with examples
of similar scenes (Dale et al.) or facial images of the same person
(Joshi et al.) captured from a similar view-point.

Kang et al. [2010] suggest learning personal user preferences for
automatic photo enhancement from a pre-defined training set manu-
ally adjusted by the user. Subsequent works eliminated the need for
each user to adjust a training set [Bychkovsky et al. 2011; Caicedo
et al. 2011]. The method of Bychkovsky et al. [2011] learns on
the fly how a specific user’s editing style differs from those learned
from a professional photo retoucher. While their approach supports
adjusting an entire photo album at once and revises the adjustment
as the user fine-tunes individual photos, they do not consider shared
content between images, and make no attempt to ensure consistency
of appearance as our method does. A user may want to edit subsets
of an album with different content in different ways (as demon-
strated in Fig. 1), which might not correspond to a unified learnable
style. Also, their approach focuses on luminance adjustments and
has not been applied to more general color manipulations.

Commercial packages such as Adobe Photoshop Lightroom and
Apple’s Aperture offer the option of copying edits made to one im-
age and pasting (applying) them to any number of selected images.
However, direct copying and pasting of edits does not take image
content into account; thus, it cannot ensure consistency and often
results in undesirable changes in appearance, as demonstrated in
Figure 2.

Laffont et al. [2012] describe a method for computing intrinsic im-
ages from a photo collection. Decomposing images in this manner
enables the application of a variety of powerful edits to the entire
collection in a consistent manner. However, this method performs
a 3D reconstruction of points and normals in the scene, and thus
requires many images of the same static scene. Our approach can
be viewed as orthogonal to theirs, as we aim to perform simpler ap-
pearance manipulations, but on a wider variety of photo collections.

Yücer et al. [2012] and Hasinoff et al. [2010] also address auto-
matic transfer of edits from one image to other images of the same
object or scene. However, their edits consist of painting or remov-
ing details in images, rather than global adjustments of appearance,
and they do not consider indirect propagation of edits.

Non-Rigid Dense Correspondence (NRDC) [2011] is a state-of-the-
art method for finding corresponding regions and color transfer be-
tween two photos that share common content. This method can
handle shared content under non-rigid deformations and color vari-
ations, and computes a parametric color transfer model between
pairs of images. In this paper we extend this method to transfer
appearance across multiple photos while taking mutual interactions
into account, thereby enforcing consistent appearance in an entire
unordered collection with non-rigid shared content. As described
earlier, our method may be used to propagate adjustments of one
or many photos to the rest of the collection, including images that
share no content with those being edited. The propagation respects
connected components, i.e., changing an image affects those im-
ages that are more similar to it than others. To our knowledge, this
is the first method to propagate appearance characteristics between
multiple unordered photos of non-rigid content in this manner.

Figure 2: Our method vs. naı̈ve copy and paste of edits. 1st row:
Professional input photos with subtle appearance differences. 2nd
row: reducing appearance inconsistencies using the original ap-
pearance of the third photo as a reference. 3rd row: Propagating
edits from the third photo to the rest of the photos using our method.
4th row: Naı̈vely copying the edits from the third photo to the rest
(as done, e.g., by Adobe Lightroom’s Sync Settings feature). Pho-
tography by Tawny Horton. Model: Jayme Jaynes.

Matching Photos in a Collection

Match graphs of images have been used in many applications, such
as 3D rendering, photo navigation, content-based retrieval, image
clustering and label propagation. Commonly, these methods rely on
a 3D reconstruction of a static scene based on sparse local feature
matching and RANSAC followed by bundle adjustment for placing
all photos in a common coordinate system and further outlier rejec-
tion [Snavely et al. 2006; Agarwal et al. 2009]. When the number
of photos to be matched is large, computing an accurate match be-
tween all possible pairs is too expensive. Therefore, a lightweight
link prediction mechanism is used to suggest candidate pairs that
are likely to yield meaningful matches, significantly reducing the
graph construction time at the expense of a partial graph edge cov-
erage [Frahm et al. 2010; Kim et al. 2012].

However, these methods are designed for static content only
(e.g., landmarks, buildings) and ignore non-rigid objects. In con-
trast, our method targets personal photo collections, where salient
non-rigid objects – such as people – may dominate the subject
matter and thus cannot be ignored. Adopting the techniques out-
lined earlier (sparse local feature matching followed by bundle ad-
justment) would only be able to match static backgrounds, and
thus is inadequate for our needs. NRDC, on the other hand, is
a unified mechanism for matching and outlier rejection. It yields
a dense pixel-wise correspondence accompanied by a confidence
map (for outlier rejection), and is capable of matching content under
non-rigid geometric transformations and various appearance differ-
ences. Face-tagging can be easily employed to aid NRDC in match-
ing faces of the same people, although we found that this step is not
needed.

Our system also relies on a link prediction mechanism inspired by
Agarwal et al. [2009]. However, it was necessary to adapt it to
our setting for several reasons. First, no nodes are redundant, as we
wish to adjust all images. Second, we target for a personal computer
implementation, rather than hundreds of cores. Third, global visual
descriptors are not sufficient for link prediction in our case as they
do not capture non-rigid variations well. On the other hand, descrip-
tors based on faces and timestamps are very effective for personal
albums but are less relevant for general internet collections.

A few recent methods [Barnes 2011; Faktor and Irani 2012; Gould
and Zhang 2012] extended the PatchMatch algorithm [Barnes et al.
2009] to find a nearest neighbor field of patch correspondences in
a large collection of photos. While their theoretical complexity is
close to linear in the number of photos, they are still very slow in
practice, as no link prediction mechanism is employed. Moreover,
as with PatchMatch, the resulting nearest neighbor field often does
not provide a sufficiently accurate and reliable correspondence [Ha-
Cohen et al. 2011]. That is why these methods are usually applied at
a relatively low resolution for computer vision applications like la-
bel propagation [Gould and Zhang 2012] and unsupervised discov-
ery of categories [Faktor and Irani 2012]. In this work we propose
an effective link prediction mechanism for NRDC-based matching
of images in personal photo albums.

3 Overview

Given a photo collection, our goal is to ensure consistent appear-
ance (similar color and exposure) of shared content across multi-
ple photos of the collection, and to maintain this consistency as
the user performs interactive adjustments on selected images. To
achieve this goal, as a pre-processing step, we construct a match
graph G = {V,E} whose vertices V = {Ii}n

i=1 represent individual
photos in the collection and whose edges E contain information re-
garding the correspondences between photo pairs. Using this match
graph we minimize a quadratic cost function that penalizes color
differences between matching areas.

The cost function and the optimization are described in more detail
in Section 4. Optimizing over the entire match graph makes it pos-
sible to ensure consistent appearance even between pairs of photos
that do not share any content directly. Thus, our framework sup-
ports indirect propagation, and edits made to a single image can, in
principle, propagate to the entire collection.

Computing the full match graph is expensive, since each edge in-
volves computing a dense correspondence between a pair of im-
ages. However, because we enable indirect propagation, it typically
suffices to construct only a sparse subset of the full set of edges;
namely, only edges connecting images with a substantial amount
of shared content. To this end, we trained an SVM-based classifier
for quickly predicting which pairs of images may have a significant
correspondence, leading to a drastic reduction in the match graph
construction time by reducing the number of accurate correspon-
dence computations to be linear in the number of photos. Our
classifier and the resulting link prediction strategy are described in
more detail in Section 5.

4 Appearance Consistency Optimization

In order to achieve consistent appearance between multiple pho-
tos in a collection we attempt to strike a balance between three
potentially contradictory goals: (i) ensuring that pixels depicting
the same content have the same color across different images; (ii)
avoiding unsightly visual artifacts, such as gradient reversals or se-
vere loss of contrast; and (iii) attempting to preserve as much as
possible the original dynamic range of each photo. This is a non-

trivial task: for example, aligning the appearance of two photos cap-
tured with different exposure settings might produce either clipped
pixels in one photo or reduced dynamic range in the other.

Our approach is to seek a set of dedicated color transformations fi
(one for each image Ii), such that the resulting transformed images
comply with our appearance consistency requirements. This is done
by solving the following optimization problem:

{ f̂i}n
i=1 = argmin

{ fi}n
i=1

∑
i6= j

A
(

fi, f j
)
+

n

∑
i=1

Csoft(fi)

subject to: Chard(fi),∀i ∈ {1, ...,n}
(1)

Here A
(

fi, f j
)

is a pairwise affinity term that penalizes color differ-
ences between shared content, while Csoft(fi) is a unary term that
softly enforces certain constraints on the color transformations, in
addition to hard constraints enforced on them by Chard(fi). Below
we describe our color transformation model and the different types
of constraints, and then discuss the affinity term.

Color transformation model. To model the color transforma-
tions fi, we use an expressive global parametric model, similar to
the one used by HaCohen et al. [2011]. Specifically, each fi con-
sists of three curves (one per RGB channel). Each curve is a smooth
piecewise-quadratic spline with 7 knots at (0, 0.2, 0.4, 0.6, 0.8, 1),
which translates to 8 degrees of freedom per curve. This model
is flexible enough to compensate for a variety of common appear-
ance differences, such as gamma curves, S-curves, color temper-
ature changes, and other common global operators. The shape of
each curve is regularized via unary soft constraint terms:

Csoft(fi) = λ1 ∑x∈{0,1} | fi(x)− x|2
+ λ2 ∑x∈{0.2 j−0.1}5

j=1
| fi(x)− x|2

+ λ3 ∑x∈{0.2 j−0.1}5
j=1
| f ′′i (x)|2.

(2)

λ1 and λ2 control how much to pull the curve towards identity (no
change) at the end points of the range (0 and 1) and at five midpoints
between the knots (middle of each spline segment). λ3 controls the
smoothness of the curve by penalizing for large second derivatives.
In our implementation we set λ1 = 50000, λ2 = 170 and λ3 = 0.08
by default, but our GUI provides the user with two sliders: one
to control preservation of dynamic range (via λ1) and another to
control preservation of original appearance (via λ2). In addition,
the curve is forced to be strictly monotonic (at the spline segment
midpoints) and to cross the x axis right of the origin (as adding
brightness is often not desired). This is done via the following hard
constraints:

Chard(fi) : i. 0.2≤ f ′i (x)≤ 5, ∀x ∈ {0.2 j−0.1}5
j=1

ii. fi(0)≤ 0
(3)

Although we compute dense (pixel-wise) correspondences between
images, we chose to use the global parametric color model de-
scribed above over a local one for several reasons: First, a global
model is more robust to errors in the correspondence. Second, a
global model is easier to regularize, as we do using our constraints.
Finally, a global parametric model is more efficient to optimize
due to the small number of unknowns it involves. This is partic-
ularly important for providing interactive feedback when manipu-
lating large photo collections.

Affinity term. One might consider defining the pairwise affinity
term A

(
fi, f j

)
in eq. (1) using the weighted SSD (sum of squared

differences) between color-mapped pairs of matching pixels:

A
(

fi, f j
)
= ∑

p
wi, j(p)

∣∣ fi(Ii(p))− f j(I j(Mi, j(p)))
∣∣2 (4)

where Mi, j : N2 → R2 is the partial pixel-wise mapping that maps
pixels in Ii to I j, and wi, j : N2→ [0,1] is the confidence map associ-
ated with this mapping. Both of these functions are computed using
the NRDC method [HaCohen et al. 2011].

Although this is a natural choice to make, this definition of pair-
wise affinities often yields poor results when multiple photos are
involved. The source of the problem is that a photo in the collec-
tion might be “pulled” in different directions by different neighbors
in the graph. If the correspondences associated with each of these
graph edges do not cover the dynamic range in a uniform manner, a
direct attempt to minimize differences between the colors of match-
ing pixels might yield ill-behaved curves and visual artifacts.

(a)

(b)

I3I1 I2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 3: Comparison between the affinity terms in Eq. (4) and
Eq. (6). Here, I1 and I3 are fixed and the goal is to propagate their
appearance to I2 by fitting a monotonic curve (only luminance for
simplicity) that takes into account the two opposite relationships.
The red and the blue points are sampled from the correspondence
between the pairs (I2, I1) and (I2, I3) respectively. The red and the
blue curves were fitted to the red and the blue points respectively
(Eq. 5). The black curve was fitted by all points (Eq. 4). The green
curve was fitted by points sampled uniformly from the red and the
blue curves (Eq. 6). (a) Result of applying the black curve on I2.
(b) Result of applying the green curve on I2.

This problem is demonstrated by the example in Figure 3: Let
I1, I2, I3 be photos such that I2 has a dark region that corresponds
to a brighter region in I1, and has a bright region that corresponds
to a darker region at I3. Attempting to find a single simple curve
that fits the transformations for all the individual matching pixel
pairs in this case results in a severe loss of contrast in the midtones
of I2 (black curve and result (a) in Figure 3).

However, if we let the two images I1 and I3 “pull” with a more uni-
form weight across the entire dynamic range, this problem would be
avoided in a more consistent way; namely, since I2 is being pulled
into two opposite directions, it should move in a consistent manner
in the direction of the stronger pull (or remain nearly unchanged,
when the pulls are of roughly equal strength). This outcome is rep-
resented by the green curve and result (b) in Figure 3, that shows
how contrast is much better preserved.

The above example demonstrates that, in general, each edge of
the graph should uniformly affect the dynamic range of the im-
age nodes to which it connects. One way to achieve this is by
up-weighting color samples from the correspondence between each
pair, located at sparsely populated color regions. However, such re-
weighting is not effective if the corresponding regions include no
samples at all in some parts of the dynamic range. Instead, we fit
a curve for each matching pair and sample it uniformly. Thus, we
can robustly take into account all observed corresponding pixels in-
cluding their relative weights, while hallucinating missing parts of
the curves according to our regularization terms.

Formally, this leads to a two-step approach. For each matched pair
of images Ii, I j, we first fit the transformation gi, j that optimally
matches the colors in Ii to the corresponding pixels in I j:

gi, j = argmin
fi

∑
p

wi, j(p)
(

fi(Ii(p))− I j(Mi, j(p))
)2 (5)

We then formulate the pairwise affinity term using L+1 uniformly
spaced samples across the dynamic range (for each color channel):

A
(

fi, f j
)
= w′i, j

L

∑
l=0

(
fi(l/L)− f j

(
gi, j(l/L)

))2 (6)

where w′i, j is a scalar weighting the contribution of the connec-
tion between Ii and I j. We define w′i, j as the average of the con-
fidence values (between 0 and 1) over the two images: w′i, j =

1
|{p}| ∑p wi, j(p). We found that the optimization in (1) results in
much better-behaved solutions using this definition of the pairwise
affinities (see Fig. 3).

4.1 Propagating User Edits

The method described so far does not require any user input. Given
a collection of photographs with shared content it simply applies a
set of color transformations – one for each image – which result in
consistent color appearance across the entire collection. However,
the method readily supports the introduction of user specified con-
straints. For example, the user may indicate that she prefers one
or more of the images in the collection unaltered (also called here
“reference” images). In this case, we simply constrain the corre-
sponding transformations fi to identity. As a result only the other
images will be transformed so as to achieve a consistent appearance
with the reference images. In case of conflicting constraints, uncon-
strained images that are more similar to one of the references will
be adjusted more towards the appearance of that reference, whereas
images with roughly equal affinity will remain unchanged.

In some cases, after the images have been made consistent, the user
might want to further adjust one or more of the images, e.g., mod-
ify the exposure or the color temperature or manipulate the tone
curves directly. The resulting curves of the edited images are then
constrained, and the subsequent optimization propagates the user’s
edits to the other images in the collection.

Fig. 4 demonstrates the effect of choosing different photos as refer-
ence images.

5 Accelerating Match Graph Construction
Computing the complete match graph for a large photo collection
can be time-consuming. There is a quadratic number of pairs to
consider, and for each pair we need to compute a dense correspon-
dence using NRDC [HaCohen et al. 2011], which takes a few sec-
onds per pair. However, we find in practice that most pairs of im-
ages share no content, even in collections from a single camera over

Figure 4: The effect of using different photos as references. First
row: input photos retrieved from an internet collection with signif-
icant appearance variability due to different cameras and different
lighting conditions. Second-fourth rows: in each row a different
photo is set as a reference.

a short time span. These pairs either do not exist as edges in the full
graph, or exist only as edges with low weight. Furthermore, the
approach described in Section 4 functions well even with only a
sparse subset of the edges in the graph. Ideally, this subset should
contain the strongest connections in the collection, and retain the
connected components present in the full graph.

In this section we describe a new link prediction mechanism, in-
spired by Agarwal et al. [2009], but adapted to work effectively for
typical personal photo collections. Our link prediction scheme es-
chews the full dense correspondence calculation on the majority of
image pairs, thereby greatly accelerating match graph construction.
Given a pair of photos Ii and I j the link predictor can quickly esti-
mate the likelihood that applying NRDC between these two images
would result in a significant connection in the graph.

Our approach consists of training a support vector machine (SVM)
to classify pairs of images into one of two categories: pairs that are
likely to have a significant correspondence between them, and pairs
that are unlikely to have such a correspondence. To create a training
set for this SVM, we performed a full NRDC computation between
all pairs in a photo collection with 69 images, labeling every pair
with more than 2% of corresponding pixels as “matchable” and the
rest as “non-matchable”. We found that 22% of the pairs in this
collection are matchable; this is roughly the average percentage of
matchable pairs in a set of six personal albums we collected to eval-
uate our method (see Sec. 6). We start by extracting several feature
vectors for every image in the collection. We experimented with
both linear and kernel SVM and found the latter to perform better
for our task. Therefore, for every pair of images Ii and I j we apply
a set of kernels on different types of feature vectors. The result is
a continuous classification measure of the “matchability” between
the two images (rather than a discrete classification), obtained by
the dot product of the SVM weights and the vector of the kernels
K(Ii, I j).

Based on this matchability classifier, we propose a link prediction
strategy that iteratively chooses which image pairs to match to con-
struct our image graph. Roughly speaking, our strategy attempts
to balance between overall graph connectivity and densifying sub-
graphs within a bounded budget of NRDC matching attempts. Be-
low we describe our matchability classifier and link prediction strat-
egy in more detail.

5.1 Pairwise Matchability Classifier

Formally, given a collection of images, we first extract a set of de-
scriptors D(Ii) = {d1(Ii), ...,dm(Ii)} from each image Ii. For each
descriptor di we define a similarity function ki(Ii, I j) that measures
the similarity between the pair (Ii, I j) with respect to that descrip-
tor. The feature vector used to train the SVM is the concatenation
of these similarities:

K(Ii, I j) =
(
k1(Ii, I j), . . . ,km(Ii, I j)

)
The final matchability classification score is then given by the inner
product of the SVM’s learned weights w and this feature vector:

M (Ii, I j) = wT K(Ii, I j).

Many image properties and descriptors have been proposed and
used to assess similarity between images. After extensive experi-
mentation on typical personal albums, we chose a set of descriptors
described in the next paragraphs.

Bag of visual words [Sivic and Zisserman 2003]: A histogram
of densely sampled SIFT descriptors [Lowe 2004], quantized by
a codebook of size 600. The codebook is obtained using K-means
on a random subset of 105 SIFT descriptors sampled from the col-
lection itself2. We also tried to concatenate histograms from dif-
ferent regions of the image, but found that due to the high geo-
metrical variance often present in personal photo albums, a single
histogram for the entire image performed better. We define the sim-
ilarity between two bag-of-words descriptors dBoW(Ii) and dBoW(I j)

as kBoW(Ii, I j) = 2∑h
dBoW(Ii)h·dBoW(I j)h

dBoW(Ii)h+dBoW(I j)h
where h denotes a histogram

bin index. Note that the codebooks used during learning and testing
are different, but this does not directly affect the input to the SVM,
which uses the distance between histograms. We found a collection
specific codebook to work better than a generic one. Note that we
do not compute direct SIFT matches at any step, since HaCohen
et al. [2011] has demonstrated that SIFT matches are not effective
for the task of color transfer between pairs of images with non-rigid
transformations.

Tiny Image: An RGB, 8× 8 pixel thumbnail of the image. We
define the similarity between two “tiny image” descriptors dtiny(Ii)

and dtiny(I j) as ktiny(Ii, I j) = 1− ‖dtiny(Ii)−dtiny(I j)‖1
3×8×8 .

Time stamp: We extract the capture timestamps dtime(Ii) and
dtime(I j) from the photo meta-data, and define their similarity as
ktime(Ii, I j) = exp

(
−
∥∥dtime(Ii)−dtime(I j)

∥∥). If this information is
not available for both photos, we define ktime = 0.

Faces: If faces in the collection were detected and recognized,
(either manually or by a face recognition method in commercial
photo management software) they can be used to infer matchabil-
ity. Face similarity between two photos Ii and I j is defined as the
number of matching faces that appear in both photos: kfaces(Ii, I j) =

∑
|faces|
h dfaces(Ii)h ·dfaces(I j)h where dfaces(I)h is one if the person h

appears in I and zero otherwise.

We compute M (Ii, I j) once for each pair of images in the collec-
tion. Although the number of pairs is quadratic in the size of the
collection, these computations are lightweight and in practice take
only a few seconds for a collection with one thousand photos (negli-
gible relative to the dense correspondence step). In extremely large
albums, for which a quadratic number of matchability score com-
putations would not be efficient enough, these computations may
be limited to each image’s first few dozens or hundreds of nearest

2Using the VLFeat (www.vlfeat.org) toolbox.

Figure 8: Propagating appearance from multiple photos using our
method. First row: Input photos with color and exposure differ-
ences. Second row: Automatic consistency using our method. Third
row: Propagating appearance from the rightmost photo. Fourth
row: Propagating appearance from two photos at once.

neighbors in time, geographic location, or any available per-image
information that is positively correlated with our classifier.

5.2 Link Prediction Strategy

The matchability classifier yields an estimated graph G∗, where the
weight of an edge between Ii and I j is set to M (Ii, I j). We then
construct the actual match graph G by computing the full dense cor-
respondence between each node Ii and a bounded number of neigh-
bors in decreasing order of weight, in the following three phases.
First, consider the first N1 nearest neighbors {I j}N1

j=1 in G∗ such that
M (Ii, I j)> 0. Second, consider the next N2 neighbors of each node
without restriction. Third, consider the next N3 that are not already
in the same connected component. As in Agarwal et al. [2009], we
are interested in the fewest possible number of connected compo-
nents, so that we can propagate colors from a single image to as
many other images in the collection as possible.

We use N1 = 15, N2 = 3 and N3 = 3 in all of our experiments.
Note that although the estimated graph G∗ may contain a quadratic
number of edges, the strategy described above only makes a linear
number of full NRDC matching attempts. As in the SVM training
step, we discard edges in which fewer than 2% of pixels are found
to correspond.

We also tried to densify the graph using “query expansion” [Agar-
wal et al. 2009], as well as the method of [Kim et al. 2012], but we
found that due to the ability of our consistency optimization method
to take indirect links between photos into account, this step was not
necessary, and therefore we did not include it in our link predic-
tion strategy. However, it may be useful for other applications that
benefit from denser graphs.

www.vlfeat.org

Figure 5: Comparison with automatic white-balance and tone of commercial tools. First row: Input photos with appearance differences.
Second row: The result of Apple Aperture’s automatic tone and white-balance which relies on either skin-tone if a face is automatically
detected, (columns 1, 2, 6, 7) or else a natural gray assumption. Third row: The result of Adobe Lightroom’s auto white-balance function.
Fourth row: Our automatic color consistency optimization result.

Figure 6: Harmonized wedding photos with our method. First row: Input photos with different color casts due to different lighting conditions.
Second row: Automatic color consistency optimization.

Figure 7: Another example in which input photos from an internet collection (first row) have been made consistent using our method (second
row) by constraining the second image as a reference.

6 Results and Evaluation

Figures 1, 2, 4, 5, 6, 7 and 8 show results of our method on sev-
eral different types of albums and image editing scenarios. Figure 2
shows the usefulness of our method even for professional photogra-
phy. Despite the near-optimal conditions in the studio, our system
can still improve color consistency and accelerate photographers’
photo editing workflow. Figure 8 shows the effects of multiple con-
straints distributed across several connected photos. In this case,
each edit affects the remaining photos in proportion to the amount
of content they share. Figures 4 and 7 demonstrate the ability of our
method to ensure color consistency even in internet collections of

landmarks captured by different photographers, with different cam-
eras, in different seasons, and under various lighting conditions.
Although we do not expect people to have interest in enforcing
consistency over such collections, these experiments demonstrate
the operating range of our method.

We compared our appearance consistency optimization method to
the auto white-balance and auto tone functions of Apple Aperture
and Adobe Photoshop Lightroom. According to the product doc-
umentation, Aperture’s auto white-balance algorithm utilizes auto-
matically detected faces to perform white-balance based on skin
color and uses “natural gray” when no faces have been found. The

second row in Fig. 5 shows that despite the appearance of the same
people in a photo collection the method based on skin color did not
perform a consistent white balance on this set. (Aperture reports
that the skin-based algorithm was used for the photos in columns
1,2, 6 and 7). Adobe Lightroom also produced an inconsistent ap-
pearance for this set (third row in the same figure). In contrast, our
method automatically adjusts these photos in a consistent way (last
row). Note that although our method does not specifically target
white-balance, enforcing consistency eliminated the warm cast in
the second column because most of the photographs in the set were
already white-balanced. Also note that our system made the col-
ors of the image at the second column washed-out to make them
consistent with the input image in the first column. In such cases,
when the result is consistent but not pleasing, the user may edit any
of the images and constrain it to propagate its colors to the rest of
the album, as demonstrated in other figures. For the sake of this
comparison we show only the fully automatic result of our system.

In addition, we compared our propagation approach to the “Sync
Settings” feature of Adobe Lightroom, which copies edit operations
from one photo and applies them to other photos. The last row
in Fig. 2 shows the result of using this feature to copy edits from
the third photo to the other photos. The differences between the
input photos lead to different results when applying the same edits
blindly. In contrast, our method propagates the edits consistently,
as seen in the third row. Once a photo is constrained by the user,
its appearance is propagated to similar photos even before any edits
are made (third photo in second row), since our method uses only
the current pixel colors and does not require editing.

We have developed a demo application that allows interactive photo
collection enhancement using our method. We refer the reader to
the supplementary video, which illustrates several albums edited
using our system.

6.1 Running Times and Implementation Details

Interactive editing

Applying a piece-wise quadratic spline curve on each channel of
image I can be expressed as matrix-vector product Fx where x are
the polynomial coefficients, and F is a matrix that depends on the
image I and the spline basis functions. Therefore, our objective in
Eq. 1 is quadratic with linear inequality constraints and can be ef-
ficiently solved using Quadratic Programming. We used a solver 3

based on the Goldfarb-Idnani active-set dual method. Our imple-
mentation caches the building blocks of the matrices required for
this representation (a small constant memory per edge in the match
graph). After applying an edit on an image, only the relevant build-
ing blocks should be updated, so the system can be re-optimized
efficiently. We use the GPU to apply the resulting color transfor-
mations on photos as the images are rendered. Thus, when editing
an album, only the color transformation parameters need to be re-
sent to the GPU rather than the entire image library.

In our experiments we found that the time it takes to update the
matrices and recompute the color transformations typically varies
between 0.23 and 0.77 seconds (all times were measured on a Mac-
Book Pro with 2.3GHz Intel Core i7 (2820qm) CPU and 8GB of
RAM). The building blocks for the initial solution are computed as
part of our pre-processing phase that we describe below.

Pre-processing

We compute the match graph on smaller versions of the photos with
maximum dimension of 640 pixels. Our modified implementation
of NRDC takes on average 5.37 seconds for a matchable image pair,

3QuadProg++ by Luca Di Gaspero: quadprog.sourceforge.net

Album Name Wedding Ireland Regents
Number of photos 865 127 61
Matchable pairs 7.7%

(28,623)
5.1%
(410)

26%
(473)

Pairs verified 7871 851 553
Pairs found 3482 240 305

Times for Individual Components
Codebook creation 63s 55s 75s
BoW descriptors 762s 157s 56s
Tiny image descriptors 6.11s 0.97s 0.48s
Matchability scores 7.77s 0.03s 0.01s
Verifying candidates 6:45:35 0:35:20 0:32:31

Comparison
Total (Our method) 6:47:52 0:38:46 0:34:43
All Pairs, Modified NRDC ~7 days 3:27:03 1:12:46
All Pairs, Original NRDC4 ~24 days 12:12:09 2:45:25

Table 1: Running times of individual components of our match
graph construction and comparison to the alternatives of attempt-
ing to match all pairs with our modified version of NRDC that re-
jects non-matchable pairs faster, and with the original NRDC algo-
rithm. See section 6.1 for more details.

and 1.32 seconds for a non-matchable pair by terminating NRDC
if no significant correspondence is found after three coarse-scale
iterations.

We measured match graph construction times for three albums us-
ing three methods. First, our method as described in Section 5. Sec-
ond, a naı̈ve computation of all pairs, but using our modified NRDC
version that rejects non-matchable pairs faster. Third, a naı̈ve com-
putation of all pairs with the original NRDC algorithm4. We de-
fine “matchable pairs” as pairs for which our modified NRDC ver-
sion found more than 2% of corresponding pixels. Table 1 lists the
running times of each component of our match graph construction
algorithm, and compares its total running time to these two other
alternatives. The table shows that our method is significantly faster,
due both to the use of link prediction mechanism and the faster re-
jection of non-matchable pairs.

6.2 Matchability Classification Evaluation

We evaluate the contribution of each of the descriptor types we use
as part of our matchability classifier. We isolate the contribution
of each descriptor by measuring its marginal contribution to the
SVM performance. We measure the performance of our matcha-
bility classifier using its recall (|{classified as matchable}∩{matchables}|

|{matchables}|)

and precision (|{classified as matchable}∩{matchables}|
|{classified as matchable}|), on six test al-

bums with threshold 0 (this is the SVM’s threshold that we use
in the first phase of the link prediction algorithm). These albums
contain different types of content (nature, city event, park, indoor
events, and an internet collection of a landmark), and varying per-
centages of matchable pairs. We repeat this test with four other
classifiers, each trained in the same way as our SVM based match-
ability classifier, but without one of the descriptors we used. Table
2 lists the average recall and precision on these test albums, and
shows that all of the descriptors we use are meaningful and com-
plement each other.

4Times for this method were estimated based on smaller subsets.

quadprog.sourceforge.net

Descriptors Average Recall Average Precision
All 66% 87%
All except time 66% 67%
All except tiny 46% 83%
All except faces 59% 85%
All except BoW 32% 87%

Table 2: Measuring the marginal contribution of each of the de-
scriptors we use. See section 6.2 for more details.

7 Summary, Limitations and Future Work
We have presented a novel and practical method for automatic opti-
mization of color consistency, which enables interactive editing of
photo collections. Our method currently accounts for global color
appearance variations only (although some local variations may be
approximated by global curves as in the case of “highlights and
shadows”). In the future, we plan to extend the method to local ed-
its as well. One possible solution might be to build a graph where
the nodes are local regions, as opposed to entire images, and edits
propagate within images in an edge-aware manner. Another lim-
itation of our approach is that our color transfer model is based
on RGB curves and does not model saturation changes well. Ha-
Cohen et al. [2011] showed that saturation can be modeled by an
additional cross-channel linear operator after estimating the curves.
Applying a similar solution to our problem will probably require us-
ing a more elaborate solver as the objective function will no longer
be quadratic. Finally, our method works best when the collection
contains a substantial amount of shared content, as typically occurs
in personal and professional collections (especially before triage).
Photos that share little (or no) content with others remain close to
their original appearance because the relative weight of the iden-
tity term gets higher. This is a desired outcome if the original ap-
pearance of these photos is reasonable, but in other cases it might
be better to start by applying an automatic enhancement method
(like [Bychkovsky et al. 2011]), that could provide a default behav-
ior for such weakly connected photos.

Acknowledgements: We thank Tawny Horton for granting us per-
mission to use her photographs of the model Jayme Jaynes in Figure
2. This work was supported in part by the Israel Science Foundation
founded by the Israel Academy of Sciences and Humanities.

References
AGARWAL, S., SNAVELY, N., SIMON, I., SEITZ, S. M., AND

SZELISKI, R. 2009. Building Rome in a day. In Proc. IEEE
ICCV.

AN, X., AND PELLACINI, F. 2010. User-controllable color trans-
fer. Computer Graphics Forum 29, 2, 263–271.

BARNES, C., SHECHTMAN, E., FINKELSTEIN, A., AND GOLD-
MAN, D. B. 2009. PatchMatch: a randomized correspondence
algorithm for structural image editing. ACM Trans. Graph. 28, 3.

BARNES, C. 2011. PatchMatch: A Fast Randomized Matching Al-
gorithm with Application to Image and Video. PhD thesis, Prince-
ton University.

BYCHKOVSKY, V., PARIS, S., CHAN, E., AND DURAND, F. 2011.
Learning photographic global tonal adjustment with a database of
input / output image pairs. In Proc. IEEE CVPR.

CAICEDO, J. C., KAPOOR, A., AND KANG, S. B. 2011. Col-
laborative personalization of image enhancement. In Proc. IEEE
CVPR.

DALE, K., JOHNSON, M. K., SUNKAVALLI, K., MATUSIK, W.,
AND PFISTER, H. 2009. Image restoration using online photo
collections. In Proc. IEEE ICCV.

FAKTOR, A., AND IRANI, M. 2012. “Clustering by Composition”
- unsupervised discovery of image categories. In Proc. ECCV (7),
474–487.

FARBMAN, Z., AND LISCHINSKI, D. 2011. Tonal stabilization of
video. ACM Trans. Graph. 30, 4, 89:1–89:9.

FRAHM, J.-M., GEORGEL, P. F., GALLUP, D., JOHNSON, T.,
RAGURAM, R., WU, C., JEN, Y.-H., DUNN, E., CLIPP, B.,
AND LAZEBNIK, S. 2010. Building Rome on a cloudless day. In
Proc. ECCV (4), vol. 6314, 368–381.

GOULD, S., AND ZHANG, Y. 2012. PATCHMATCHGRAPH:
building a graph of dense patch correspondences for label trans-
fer. In Proc. ECCV, vol. Part V, 439–452.

HACOHEN, Y., SHECHTMAN, E., GOLDMAN, D. B., AND
LISCHINSKI, D. 2011. Non-rigid dense correspondence with
applications for image enhancement. ACM Trans. Graph. 30, 4,
70:1–70:9.

HASINOFF, S. W., JÓŹWIAK, M., DURAND, F., , AND FREEMAN,
W. T. 2010. Search-and-replace editing for personal photo col-
lections. In Proc. ICCP.

JOSHI, N., MATUSIK, W., ADELSON, E. H., AND KRIEGMAN,
D. J. 2010. Personal photo enhancement using example images.
ACM Trans. Graph. 29, 2 (April), 12:1–12:15.

KAGARLITSKY, S., MOSES, Y., AND HEL OR, Y. 2009.
Piecewise-consistent color mappings of images acquired under
various conditions. In Proc. ICCV, 2311–2318.

KANG, S. B., KAPOOR, A., AND LISCHINSKI, D. 2010. Person-
alization of image enhancement. In Proc. IEEE CVPR.

KIM, K. I., TOMPKIN, J., THEOBALD, M., KAUTZ, J., AND
THEOBALT, C. 2012. Match graph construction for large im-
age databases. In Proc. ECCV .

LAFFONT, P.-Y., BOUSSEAU, A., PARIS, S., DURAND, F., AND
DRETTAKIS, G. 2012. Coherent intrinsic images from photo
collections. ACM Trans. Graph. 31, 6, 202:1–11.

LEVIN, A., LISCHINSKI, D., AND WEISS, Y. 2004. Colorization
using optimization. ACM Trans. Graph. 23, 3, 689–694.

LOWE, D. G. 2004. Distinctive image features from scale-invariant
keypoints. Int. J. Comput. Vision 60, 2, 91–110.

OSKAM, T., HORNUNG, A., SUMNER, R. W., AND GROSS,
M. H. 2012. Fast and stable color balancing for images and
augmented reality. In 3DIMPVT, IEEE, 49–56.

PITIÉ, F., KOKARAM, A. C., AND DAHYOT, R. 2007. Automated
colour grading using colour distribution transfer. Comput. Vis.
Image Underst. 107 (July), 123–137.

REINHARD, E., ASHIKHMIN, M., GOOCH, B., AND SHIRLEY,
P. 2001. Color transfer between images. IEEE Comput. Graph.
Appl. (September).

SIVIC, J., AND ZISSERMAN, A. 2003. Video Google: A text
retrieval approach to object matching in videos. In Proc. IEEE
ICCV, 1470.

SNAVELY, N., SEITZ, S. M., AND SZELISKI, R. 2006. Photo
tourism: exploring photo collections in 3D. ACM Trans. Graph.
25 (July), 835–846.

SNAVELY, N., GARG, R., SEITZ, S. M., AND SZELISKI, R. 2008.
Finding paths through the world’s photos. ACM Trans. Graph.
27, 3, 11–21.

VAN DE WEIJER, J., GEVERS, T., AND GIJSENIJ, A. 2007. Edge-
based color constancy. IEEE Trans. Im. Proc. 16, 9, 2207–2214.

YÜCER, K., JACOBSON, A., HORNUNG, A., AND SORKINE, O.
2012. Transfusive image manipulation. ACM Trans. Graph. 31,
6, 176:1–176:9.

