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Abstract

We describe a new 3D scene streaming approach for remote walkthroughs. In a
remote walkthrough, a user on a client machine interactively navigates through a
scene that resides on a remote server. Our approach allows a user to walk through
a remote 3D scene, without ever having to download the entire scene from the
server. Our algorithm achieves this by selectively transmitting only small parts of
the scene and lower quality representations of objects, based on the user’s view-
ing parameters and the available connection bandwidth. An online optimization
algorithm selects which object representations to send, based on the integral of
a benefit measure along the predicted path of movement. The rendering quality
at the client depends on the available bandwidth, but practical navigation of the
scene is possible even when bandwidth is low.
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Chapter 1

Introduction

During the past few years we have witnessed an explosive growth in the perfor-
mance and capabilities of inexpensive 3D graphics accelerators. Consequently,
state-of-the-art home PCs are now capable of interactively displaying fairly com-
plex virtual 3D worlds. Concurrently, standards (such as VRML [3]) have emerged
for describing the geometry and the behavior of 3D virtual worlds on the Internet,
and applications and plug-ins capable of displaying online 3D content abound.
Despite these developments, however, there are still disappointingly few sites on
the WWW on which interesting 3D content, such as compelling and complex
3D scenes, can be found. Undoubtedly, one of the major reasons for that is the
latency problem. Compelling 3D scenes contain a large number of object mod-
els, each with detailed geometry, as well as many textures. Such models take up
large amounts of storage space, and take a long time to download from the server
to a browser running on a remote client. As a result, the “download-and-play”
paradigm used in today’s VRML browsers is impractical when it comes to such
3D scenes.

In this work, we describe a 3D scene streaming approach that almost entirely
eliminates latency in remote walkthroughs of complex static 3D scenes. (In a
remote walkthrough the user/client interactively navigates through a 3D scene
that resides on a remote server.) Data streaming solutions are commonly used for
transmission of audio and video content over the Internet. However, in the case of
audio and video the order in which data is played on the receiving end is known in
advance. In contrast, when a user interactively navigates through a 3D world, no
a priori transmission order can be determined. Instead, our approach utilizes the
fact that the user at the client side typically sees only a very limited view of the
world at any given time, a view that changes in a continuous manner. The server
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is notified of any changes in the velocity of the user’s virtual camera, and decides
what to transmit based on that information.

The streaming server regards the scene as a collection of 3D objects, each of which
may have one or more representations. For example, an object can be represented
as a progressive mesh, a precomputed collection of models at different levels of
detail, or a view-dependent image-based impostor that is generated on demand.
The goal of the server is to select a transmission sequence of object representa-
tions that will provide the highest rendering quality throughout the walkthrough,
subject to the limitations imposed by the available bandwidth. This transmission
schedule is determined by an online optimization algorithm that decides which
representation to send at any given moment, based on the image quality improve-
ment predicted for the rest of the walkthrough.

Our approach utilizes several techniques that were originally used for acceleration
of interactive local walkthroughs of complex 3D scenes. However, it significantly
departs from local rendering frameworks in the nature of the optimization that
is taking place. In the local walkthrough context the performance bottleneck is
the rendering engine, and existing approaches attempt to maximize the quality of
each frame, while maintaining a certain frame rate. Each frame is considered sep-
arately and almost independently of the others. In our context, the bottleneck is
the connection bandwidth between the server and the client; we assume that the
client is able to interactively render whatever the server has managed to transmit
so far. Any object that has already been transmitted to the client can be rendered
from that point on without consuming further bandwidth. Thus, our optimiza-
tion algorithm ignores frame rates completely, and is concerned with maximizing
quality over time. Our results show that in a variety of bandwidth conditions, a
user can start traversing a scene almost immediately. The quality of the render-
ing depends on the available bandwidth, of course, but practical navigation of the
scene is possible even when bandwidth is low.

The main contribution of this work is a new general formulation for the problem
of streaming a scene across a limited bandwidth connection, which uses the novel
concept of cumulative benefit integral. In particular, our formulation supports
both geometric and image-based impostors in a single online optimization frame-
work. The actual streaming system described in this work (described in more
detail in Appendix A) served as a testbed for our ideas; it is not ready for real
world applications, since our current implementation makes several simplifying
assumptions.
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Chapter 2

Background

2.1 Acceleration of local rendering

Interactive navigation through complex 3D worlds requires the ability to render
the scene at an acceptable frame rate, while keeping the image quality as high as
possible. Over the years, quite a few effective techniques for accelerated rendering
of complex objects and scenes have been developed, most of which can be easily
incorporated into our framework as bandwidth saving techniques. One class of
acceleration techniques are visibility culling algorithms, which attempt to avoid
rendering objects that cannot be visible in the image [1, 11, 26, 29]. Another
approach is to use level-of-detail (LOD) models of objects in the scene [9] and/or
image-based impostors (e.g., texture mapping the image of a complex object onto
some simple geometry) [2, 17, 20, 23].

Accelerated rendering of complex objects and scenes can also be achieved by pure
image-based rendering [4, 18] (IBR) and light-field rendering [10, 15], where an
object/scene is represented entirely as a collection of images, without any kind of
explicit geometric model. An IBR-based remote rendering system has recently
been described by Yoon and Neumann [28]. However, it appears that pure image-
based rendering and light-field rendering are not readily applicable in the context
of remote walkthroughs of complex scenes, since the size of the representation
can still be quite large, and thus the latency problem remains. Also, it is not at all
obvious how to extend these representations in order to allow dynamic scenes.

Most of the other local rendering acceleration techniques, however, can be eas-
ily incorporated into remote walkthroughs. For example, if the server knows (or
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can estimate) the viewing parameters of the virtual camera at each point in time,
various visibility culling approaches can be utilized by letting the server perform
the culling. Culled objects need not be transmitted to the client, and the resulting
available bandwidth can be spent on transmitting more information about those
objects that are visible. Similarly, when a complex object is far away from the
virtual camera, the server need not transmit the full model of the object. Instead, a
coarser geometric model, or any other kind of impostor can be transmitted. Again,
the saved bandwidth can be better spent on objects that are nearer to the virtual
camera. In our system, so far we have implemented hierarchical frustum culling
[5], simple LODs, and image-based impostors a la Shade et al. [23].

2.2 Benefit/cost optimization

Funkhouser and Sequin [9] (F&S) describe a predictive approach to local render-
ing. Based on measured performance parameters of the rendering engine, they
predict how much geometry can be rendered in a frame’s time. Heuristics are
used to define a benefit for each LOD of each object, and constrained optimiza-
tion is used to select the most beneficial LODs (including “object not rendered”)
for the estimated rendering budget. Maciel and Shirley [17] (M&S) extended this
predictive approach to consider entire clusters of objects, and introduced ways to
simplify objects, other than geometric LOD models.

The predictive approach is not readily applicable to 3D scene streaming. In the
remote rendering paradigm, the bottleneck is not the client’s rendering rate, but
rather the rate at which object representations arrive at the client. Therefore a
notion of optimizing for a “frame” or another client-related period of time is not
useful. The client can always use techniques such as the predictive approach to
accelerate local rendering, but rendering quality will still only be as high as the
data that has arrived from the server so far. In remote rendering data is transmitted
continuously and is not synchronized with the rendering of the frames. Network
latency, and the amount of time it takes to transmit an object representation, mean
that the server cannot optimize for the current frame the client is rendering. The
server does not know the exact viewing parameters at the client side, and must
estimate them. As a result, it must optimize for the future, instead of for a partic-
ular moment in time. A further difference is that once a representation has been
transmitted, it can be reused by the client for the remainder of the walkthrough.
For example, if the full geometry of the object has been sent, it need never be
sent again. This is in contrast to local rendering, where the object needs to be
considered as part of the “rendering budget” of every frame.
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2.3 Graphics over network

Distributed virtual environments have attracted a considerable amount of research
attention during the past decade [8, 16, 24]. However, most of the research in
this area is concerned with efficient message passing and management of multiple
interacting dynamic users, and does not address the problems of streaming large
numbers of geometrically complex object models.

The F&S approach has been extended to the context of remote rendering by
Hesina and Schmalstieg [12, 21]. The latter approach is based on continuous
LODs with the server attempting to transmit to the client all of the objects within
a circular area of interest around the current viewing position. Our approach is
somewhat more general in that it supports both geometric and image-based object
representations. We also present a new online optimization framework for remote
rendering, which uses path prediction and a cumulative benefit function in order
to more efficiently exploit the available bandwidth.

Schneider and Martin [22] describe a network graphics framework, where an ap-
propriate representaion for a transmitted object is selected based on the available
bandwidth and the rendering capabilities of the client machine. However, they
focus on transmission of individual 3D models, rather than on interactive walk-
throughs of complex virtual worlds containing many different objects.

2.4 Compression of 3D models

Transferring 3D objects over the Internet has been a subject of considerable aca-
demic as well as commercial interest for a while. To reduce bandwidth require-
ments a variety of geometry compression schemes have been devised [7, 25, 27].
These methods are capable of lowering the network bandwidth requirements down
to 10 bits per vertex, on average (including coordinates and connectivity). How-
ever, even when geometry compression is being used, it is still wasteful to trans-
mit the entire scene across the network, since it contains objects that might never
be seen in the walkthrough, or at least never be seen in detail. From our stand-
point, compression is equivalent to an increase in bandwidth. It is easy to add
compression to any algorithm that optimizes network transfers, such as ours, thus
effectively increasing the available bandwidth.

Another representation geared at transmission of 3D objects is progressive meshes,
introduced by Hoppe [13]. Progressive meshes provide a semi-continuous refine-
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ment of an object, that provides a very rough shape of the object with a small
amount of data, and can refine it by transmitting further data. Refinement can be
view dependent, i.e., take into account what the user is viewing [14].

Progressive meshes are very effective for transmission of individual complex ob-
jects. Note however, that they do not constitute a complete solution for remote
walkthroughs, since they are applied to each object separately. Although they are
not currently implemented in our system, nothing in our approach prevents their
incorporation. On the contrary, they fit nicely into our cumulative benefit concept.

Finally, Cohen-Or et al. [6] describe a compression technique that is well-suited
for streaming of non-interactive walkthroughs of 3D scenes, where the user fol-
lows a predefined path through the 3D scene. In contrast, our work is geared
towards interactive walkthroughs.
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Chapter 3

Overview

The architecture of our remote walkthrough system is shown in Figure 3.1. The
full scene description is initially stored in a remote scene database on the server.
The client periodically transmits to the server the user’s current viewing parame-
ters, including viewpoint velocity and acceleration. The server performs motion
prediction and decides which representations of which objects to transmit to the
client. The client stores all of the object representations it receives in its local
database. For each viewpoint, the representations that provide the best rendering
quality are selected, among those available in the local database, and rendered. A
more detailed overview of the implementation is presented in Appendix A.

Assuming that the client has a rendering engine powerful enough to render re-
ceived object representations interactively (applying local rendering acceleration
schemes as necessary), the main bottleneck of our system is the connection band-
width. Since transferring an entire complex scene takes too long, the user starts
traversing the scene as soon as information begins to arrive from the server. The
server’s goal is to select which parts of the scene to send, such that the frames ren-
dered at the client side will look as similar as possible to frames that would have
been rendered had the entire model been available to the client. The selection is
done using an online optimization algorithm.

The scene description consists of a collection of objects. Each of these objects
has a set of representations associated with it. In principle, these representations
can include the full geometric model of the object, several LODs or a progressive
mesh representation, dynamically generated or precomputed image-based impos-
tors, and any other conceivable representation. The representations may be a static
part of the object database, such as a progressive mesh or LODs, or may be cre-
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Figure 3.1: A client-server architecture for remote walkthroughs

ated during the walkthrough, as in the case of dynamically generated image-based
impostors. Our current implementation uses dynamically generated image-based
impostors as well as predefined LODs.

Each object representation has an associated cost, which is its expected transmis-
sion duration. It also has an associated view-dependent benefit measure that can
be calculated for any viewpoint, which corresponds to the contribution of the ob-
ject to the total visible quality of the scene. This measure reflects the accuracy
of the representation with respect to a given virtual camera, the visibility of the
object, and its importance — similarly to the benefit measure used by Funkhouser
and Sequin. Our particular cost and benefit measures are discussed in more detail
in the next chapter.

The online optimization algorithm is based on a simple greedy optimization strat-
egy. The algorithm computes an added benefit integral for all relevant represen-
tations (of objects that are predicted to become visible), and transmits the repre-
sentation with the best benefit to cost ratio. When the server finishes sending the
representation, the selection process starts over. The computation of the added
benefit integral is discussed in Chapter 5.
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Chapter 4

Representation cost and benefit

In the remote walkthrough context, the cost associated with a particular object
representation can be estimated as the size of the representation divided by the
available bandwidth, plus some constant overhead cost. In practice, the effec-
tive connection bandwidth varies according to network load. Thus, the average
bandwidth over a recent time window should be used in the cost estimation.

The size of the representation is easy to pre-compute for predefined object rep-
resentations, such as pre-generated LODs or pre-compressed textures stored in
the database. In the case of dynamically generated representations, such as view-
dependent image-based impostors, the exact size of the representation is not known
in advance. It would be impractical to calculate the exact size of such a representa-
tion, as that would imply generating representations that aren’t selected to be sent
to the client, and compressing them (if the system uses compression). The size
therefore needs to be estimated, for example, in the case of image-based impos-
tors, with the help of a table specifying a typical compressed size for image-based
impostors of different sizes.

The definition of representation benefit is similar to the one used by F&S and
M&S. It is defined as a product of several terms:

Accuracy A measure of how well the representation approximates the appear-
ance of the full object rendered from the same point of view. Unlike M&S,
we don’t assume that accuracy is static. For example, an image-based im-
postor is considered 100 percent accurate when viewed from the point of
creation, but its accuracy diminishes away from that point. Similarly, a low
level of detail looks better when far away than when the user views it close-
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up.

Visibility A measure of how clearly the object is seen, and how much of it is seen.
The size of the object is an important factor for visibility. Other factors
include occlusion, how much of the object is inside the view frustum, the
speed of the object (fast moving objects are less clearly seen), and effects
such as fog.

Importance A measure of how much attention the user is giving, or should be
giving, the object. In a game, for example, game objects (monsters, guns,
keys) are more important than scenery (plants). Distance also affects impor-
tance: a nearby ring on a table is more important than a distant mountain,
even if the mountain takes much more screen space. One can also assume
that the user is giving more attention to objects at the center of the screen,
and that moving objects grab the attention of the user more than static ones.
Since importance is strongly dependent on the particular application, we do
not currently use this term in our testbed.

Visibility of change Switching representations can cause hysteresis, alerting the
user to the change. It is therefore preferable to make fewer, and less drastic,
changes in representation. If possible, it is best to switch representations
when the object is out of view. It should be noted that in the case of a pow-
erful client, the client can take steps to reduce hysteresis, such as blending
or morphing between representations.

4.1 Accuracy

Different representations have different accuracy functions, and even the same
representation can provide different visual errors. An image-based impostor can
appear pixellated (when close), or at a wrong angle (Figure 4.1), while an LOD
(or progressive mesh) can appear too coarse (Figure 4.2).

It is important that the different accuracy functions are comparable, so that the op-
timization process could select between the representations. The accuracy func-
tions should be defined such that representations with the same accuracy provide
a visible error that is “perceptually similar”, that is, an accuracy of 50% is “twice
as bad” as full accuracy, no matter the representation. This can be experimentally
measured from user feedback.

Our image-based impostor accuracy function, for example, was determined using
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(a) Full quality (b) Pixellated (c) More pixellated

(d) Full quality (e) At angle (f) At large angle

Figure 4.1: Impostor visual errors

(a) Full quality (b) Coarse LOD

Figure 4.2: Level of detail visual error
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an experiment in which users were asked to grade the quality of image-based
impostors at various scales and angles. This allowed us to look at the angle and
pixellation accuracy problems both separately and together. The experiment was
not perfect, as it showed objects separately against a single color backdrop and
lacked the context of a scene. It did show some interesting points, for example
that when the impostor is rotated by a small angle (up to 20–30 degrees), this
hardly affects perceived quality. Our accuracy measure, empirically derived to
match the results of that experiment, is:

min

�
1 � h0

h ��� � 1
sin60

min � sinα � sin60 � � 3 �
where h0 is the height of the impostor’s texture, h is the height (in pixels) of the
object’s image from the current viewpoint, and α is the angle between the impos-
tor’s base line, and the line from the eye to the impostor’s center. Qualitatively, the
larger the visible height, compared to the texture’s height, the lower the quality,
due to pixellation, and the smaller the angle, the lower the quality, with angles
between 60 and 120 degrees considered to be full quality.

For geometric LOD representations the following accuracy function was used:

max � a � F � 1 �
max � a � f � 1 �

Here, a is the area, in pixels, of the bounding box of the object on the screen, f
be the number of faces in the LOD, and F the number of faces in the full model
of the object. Accuracy is determined by the ratio between the average face size
in the full object, and the average face size in the LOD, where a � F and a � f are
estimates for these. A square root is taken to make this measure comparable to
the impostor accuracy, which uses height rather than area.

Face sizes of under one pixel are ignored, being considered instead as one pixel, as
such higher accuracy doesn’t have a visual effect. As the object becomes smaller
on the screen, the face size of the full object becomes smaller than a pixel, and the
accuracy of the LOD increases, as the ratio between 1 and a � f is calculated. Once
the LOD’s face area drops below 1 pixel, it is considered to have full quality.

4.1.1 Compound Accuracy

The LOD accuracy function above works for objects that are defined only by their
geometry. Once textures are added, we have the option of levels of detail for the
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textures, too. Like the geometric object, a texture has a cost. Its benefit, however,
is only defined in relation with the object that uses it (assuming, for now, that a
texture is used by one object only). Increasing the accuracy of either the texture
or the LOD increases the total benefit of the object.

The compound accuracy measure assigns to each LOD an accuracy that is a func-
tion of the next higher LOD and the currently available texture on the client side.
Similarly, a texture’s accuracy is the same function, but applied to the next level
of texture detail, and the current geometric LOD.

We have yet to implement this in our system. Instead, we use one level of texture
detail, which is sent before the geometric data. This is achieved by inserting it into
the optimization with a benefit equal to the benefit of the LOD, and preventing the
LOD from being considered by the optimization until the texture is selected for
transmission.

It may be noted that some texture information can be extracted from image-based
impostors. This can be used to save some of the transmission cost of textures,
and may be considered by the benefit measure, when the client is designed take
advantage of this. Like the compound benefit measure, this idea isn’t implemented
in our system.

4.2 Visibility and hysteresis

Our implementation only considers the object’s size and relation to the viewport.
Objects outside the view frustum get a visibility of zero. For objects inside the
view frustum, visibility is defined as the number of pixels that the object’s bound-
ing rectangle takes on the screen (in our current implementation, it is the bounding
rectangle of the projection of the object’s bounding box). The visibility of objects
that are partly outside the view frustum is reduced accordingly.

We do not explicitly consider the effects of hysteresis in our quality measure, but
our system can optionally fade out an existing representation, and fade in the new
one, over a short period of time, so that hysteresis is reduced.
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Chapter 5

The added benefit integral

Our goal is to determine which object representations the server should trans-
mit to the client, and in what order, such that visual accuracy is maximized over
the walkthrough. More formally, let ri j denote representation j of object i, with
transmission duration di j and a representation benefit bi j. Since the benefit of
a representation depends on the viewing parameters, which change continuously
during the walkthrough, we write it as a time-dependent function bi j � t � .
It can be assumed that at any time t the client has already received several different
representations for object i, so it is free to choose among them the best one for the
current view. Thus, the actual object benefit of the displayed representation at
time t can be expressed as:

bi � t ��� max
j
�

Ri
�
t � bi j � t � �

where Ri � t � is the set of different representations of object i that are available to
the client by time t. Due to the limited bandwidth, the sets Ri � t � must satisfy:

∑
i

∑
j
�

Ri
�
t �

di j � t

Now consider for a moment an offline version of the problem, when the walk-
through path is known in advance; in this case, we are faced with the following
scheduling problem: find a transmission schedule of ri j that maximizes the cumu-
lative benefit of all objects over the entire length of the walkthrough:

∑
i

� tend

t � 0
bi � t � dt
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where tend is the end time of the walkthrough.

In the online case, when the server considers ri j as a candidate for transmission
it must estimate how much ri j will add to the object benefit bi, given the repre-
sentations already available at the client side at this moment in time. The “added
benefit” at a particular time t is then defined as max � bi j � t ��� bi � t � � 0 � . This ex-
pression should be integrated over the remainder of the walkthrough in order to
estimate the cumulative benefit of transmitting ri j.

Note that while we write the added benefit as a function of t, it is really a func-
tion of the viewing parameters, which in turn change with t. The server doesn’t
know the true viewing parameters at future times t, and uses motion prediction
to estimate them. Therefore bi j � t � and bi � t � are just estimates of the actual bene-
fit values. Since we know that our motion prediction is not perfect, we limit the
integration to a finite window of time into the future:

� �
t � t0

max
�
bi j � t ��� bi � t � � 0 � � att � t � tcur � dt

Here t0 is the earliest time of the arrival of the representation. This is the current
time plus the time di j it takes the representation to arrive at the client side. att is
an attenuation function that reduces with time, to take into account the uncertainty
about path prediction. In our implementation, att is a simple cutoff function, that
limits the range of the integral.

5.1 Estimation of added benefit and object selection

The general formulation of the added benefit integral does not immediately lead
to a practical implementation. A complex scene contains many objects, each of
which may have many different representations. In fact, the number of represen-
tations may be infinite. For example, for each object there is an infinite number
of directions from which a view-dependent image-based impostor might be con-
structed. Obviously, the server cannot afford to take all possible representations
of all objects into account when deciding which representation to transmit next:
the choice must be made from a small subset of object representations.

In order to limit the set of object representations that must be considered at each
instance, the server performs path prediction based on the viewpoint motion infor-
mation it receives from the client. Path prediction is also necessary for the server
to be able to compute the added benefit integral for each object representation,
since the integral contains view-dependent benefit terms.
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In order to perform path prediction, we must make some simplifying assump-
tions regarding possible motions of the viewpoint. Our current implementation
assumes that at any given instance in time the user is either (i) standing in place;
(ii) turning about; or (iii) moving in a straight line. It is important to note that
these assumptions do not force the user to actually follow straight lines — the ac-
tual motion can trace a more general curve. In this case, the prediction algorithm
could compute, at any instance, the average direction in which the user seems to
be advancing. Also note that the optical axis of the viewing frustum need not be
aligned with the viewpoint path. Thus, it is also possible to handle the strafing
(sideways) movement commonly used in 3D games.

To predict the viewpoint path, we simply assume that once the user has started
a particular type of motion, she is likely to continue it in the near future. This
assumption allows us to discard many objects at any given instance — all of the
objects that will never be seen so long as the current motion continues. Having
guessed the path in this manner we can decide which representations to consider
for each of the remaining objects, and compute the added benefit integral only for
these representations. The following sections describe how objects and represen-
tations are selected, and how the integral is calculated for each of the three types
of motion.

5.1.1 Standing in place

In this simple case the viewing parameters are fixed, and we only consider objects
that are inside the current viewing frustum. For each object, in addition to its
view-independent representations, we consider image-based impostors generated
using the current viewing parameters.

In this case, the benefit of each representation does not change with time, so the
integral is simply a product of the added benefit and the length of the integration
interval: from the time that the representation arrives to the client until the cutoff
time. The cutoff time in this case grows with time, based on the assumption that
the longer the user stays in place, the more likely she is to continue to stay. This
way, short stops will only consider representations that take little bandwidth, and
provide an immediate improvement to the scene, but if the user takes a coffee
break, the scene will look much improved when she returns.
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5.1.2 Turning about

When turning about, we assume that the objects look the same as they move across
the viewport. This is true for a cylindrical projection, and close enough for a
planar perspective projection with a reasonably small field-of-view. Therefore, we
consider image-based impostors generated with the object rendered at the center
of the viewport.

Since representation accuracy remains fixed in this case, we can take it outside
the integral, and integrate only the remaining benefit terms — in our case, just
visibility. Visibility has two different integration phases. When the object is fully
inside the viewport, visibility is constant. When the object is at the edge of the
viewport, entering or exiting, visibility grows or diminishes linearly. Both cases
are simple to integrate.

When turning at a fixed speed, angle and time are interchangeable. We start in-
tegrating from the time (angle) at which the representation will reach the client.
The cutoff value in this case is set to twice the field-of-view angle (in the direction
of rotation). Eventually, we will consider all objects that are inside the circle that
is created by turning the view frustum, as shown in Figure 5.1a. The far clipping
plane determines the radius of this circle.

5.1.3 Moving in a straight line

When moving, forward or backward, the objects we take into consideration are
those inside a corridor defined by sliding view frustum forward or backward along
a straight line, as shown in Figure 5.1b. Our cutoff function determines where this
corridor ends. In this case, the set of considered objects changes with time. In
fact, this is the only case when we can’t pre-select the objects and keep them for
the entire length of the specific motion. To generate an image-based impostor
for an object, we select the viewpoint half way between the time when the object
enters the view frustum and the time it exits.

This case is the most complicated to integrate, since the representation’s accuracy
changes as we move. Visibility also changes in a non-linear manner. The repre-
sentation providing the maximal benefit bi � t � at the client can also change during
such movement. For simplicity, we integrate numerically in this case, by sampling
the benefit function along the integration interval.

The integration interval is taken from the moment the object enters the view frus-
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Figure 5.1: Object selection areas defined by a moving view frustum. a) turning
about traces out a circular selection area; b) when moving in a straight line the
selection area has the shape of a prism.

tum, to the moment it exits it. This interval is further limited by the transmission
time of the representation, and the cutoff time. The cutoff value is defined as twice
the time it takes the user to reach the current far clipping plane.
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Chapter 6

Results

In order to experiment with our streaming strategy, we implemented a testbed
client-server system in Java, with rendering done through the Magician OpenGL
interface library. The system is able to simulate network connections with differ-
ent bandwidths between the client and the server modules. In this implementation,
object representations are transmitted through this connection without any kind of
compression, except surface textures that are part of the scene database, which are
stored and transmitted as JPEG images. More details about the structure of this
implementation are available in Appendix A.

We tested our system on several outdoor scenes. We present here the results of
two scenes: one, a statue garden, contains objects made of several hundred to
several thousand polygons; the second, a terrain populated with trees, animals,
and a few man-made structures, contains objects from hundreds of polygons to
over a hundred thousand polygons, as well as surface textures. Figure 6.1 shows a
bird’s eye view of the statue garden, while Figure 6.2 shows two bird’s eye views
of the terrain scene.

6.1 Statue Garden results

The statue garden scene’s model consists of textured ground tiles and statues
(VRML objects) on pedestals. Each statue may appear more than once in the
garden, but in such cases statues are duplicated, rather than instanced, so as to
simulate a larger number of different objects. The size of the garden and the av-
erage population by statues are parametrically determined. In the tests described
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Figure 6.1: Bird’s eye view of the statue garden

Figure 6.2: Two bird’s eye views of the forested terrain
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below, the ground tiles and the pedestals account for 4,300 polygons, while the
bulk of the model consists of triangle meshes of the 257 statues, which sum up
to 513,775 polygons. The total size of the scene model is roughly 12.5MB, with
112KB for the ground tiles (including textures) and pedestals, and the rest for the
statues.

In order to test and compare the performance of our streaming approach, we
recorded a walkthrough path through the garden scene (40 seconds long), and
then simulated a remote walkthrough along this path at three different connec-
tion bandwidths: 2000 bytes/sec, 20000 bytes/sec and 100000 bytes/sec. At these
bandwidths, downloading the entire scene model would have taken 1:50 hours, 11
minutes, and 2 minutes, respectively. Note that in our tests the streaming server
was not “aware” that the walkthrough path was predetermined in advance. Thus,
the server had no information about future motion of the viewpoint.

In all three tests the ground tiles were the first objects selected for transmission by
the server, and their full geometric description was transmitted to the client. This
is not surprising, since the geometric description of each tile is rather compact,
while the added benefit is large: each visible tile covers many pixels on the screen.

Figure 6.3(a)–(c) shows how one frame of our walkthrough looks at the three
different bandwidths, while Figure6.3(d) shows the corresponding frame rendered
using the full model of the scene, for comparison.

At 2000 bytes/sec, there is not enough bandwidth to send decent quality repre-
sentations for objects. For some of the objects, a first, low quality representation,
such as the image-based impostor of the rabbit in Figure 6.3a, arrives only after a
few seconds that they are “visible”, so the user doesn’t even see them at first. This
is mainly a problem at the beginning of the walkthrough, but also when viewpoint
motion type changes from moving in straight line to turning, especially when there
are many objects in the field of view.

At 20000 bytes/sec, there is enough bandwidth for decent quality representations
of the objects to arrive in a more timely fashion. The low detail mesh of the rabbit
in Figure 6.3b has just replaced an image-based impostor, whose accuracy became
inadequate after the viewpoint moved so close to it. All objects that should be
visible in the frame have some representation.

At 100000 bytes/sec, the remote walkthrough is indistinguishable from the one
rendered using the full model. While some of the distant objects are represented
by image-based impostors, this isn’t noticeable.

In order to provide a more quantitative comparison between the three walkthroughs,
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(a) 2000 bytes/second (b) 20000 bytes/second

(c) 100000 bytes/second (d) full model

Figure 6.3: Rabbit vs. bandwidth

we plotted the walkthrough quality over time in Figure 6.4. For the purposes of
these plots, we define walkthrough quality at a particular time t as the sum of the
benefit measures of all the statue representations rendered at time t, divided by the
sum of the benefit measures of their full representations. A walkthrough quality
of 1 means that all rendered objects are indistinguishable from their full represen-
tations. When ground tiles are included in the walkthrough quality measurement,
the resulting quality exceeds 80 percent at all times in all three walkthroughs.
Therefore, in order to more clearly see the differences between the three band-
widths, we excluded ground tiles from the computation and took only the statue
objects into account.

As demonstrated by Figure 6.4, quality is at or near 100 percent throughout the
100000 bytes/sec walkthrough. At 20000 bytes/sec, walkthrough quality stays
between 50 percent and 100 percent. At 2000 bytes/sec, not enough bandwidth
is available to sustain good walkthrough quality. Some statues don’t have any
representation at the client side, which contributes to the low quality.

Quality dips, for example at 7 seconds and 23 seconds into the walkthrough, when
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Figure 6.4: Walkthrough quality over time - garden scene

the user approaches an object and sees it up close (the rabbit frames in Figure 6.3
were taken 8 seconds into the walkthrough). In these cases, the imperfections
of the lower quality representations are much more noticeable. Once the object
leaves the view frustum, at 11 seconds and 29 seconds, quality goes back up. At
seconds 23 to 28 and 32 to 39, the viewpoint is stationary. The server then has
time to send several updates for objects inside the view frustum. This is seen as
stair-like increases in walkthrough quality.

6.2 Terrain results

We did a similar test with the terrain scene (shown in Figure 6.2). The terrain
scene’s model consists of a terrain described by a height map, and divided into
tiles, each of which has a texture. Polygonal objects (VRML and ASE objects),
some of which are textured, were placed on this terrain. As with the statue garden
scene, duplicate objects were replicated in memory instead of instanced, so as to
be considered different objects by the optimization algorithm. In the test described
below, there are 472 objects in the scene, 256 of which are terrain tiles. The
remaining 216 objects contain over 2.5 million polygons. The total size of the
model is roughly 97MB, with the terrain and all textures taking under 300K, and
the rest is geometric data (including texture coordinates).

With this scene, we recorded a 200 second path, and used the same bandwidths
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(a) 2000 bytes/second (b) 20000 bytes/second

(c) 100000 bytes/second (d) full model

Figure 6.5: Image qualities at different bandwidths - terrain scene

for testing as with the statue garden scene: 2000 bytes/sec, 20000 bytes/sec and
100000 bytes/sec. At these bandwidths, downloading the entire scene model
would have taken 13.8 hours, 83 minutes, and 17 minutes, respectively.

Figure 6.5(a)–(c) shows how one frame of our walkthrough looks at the three dif-
ferent bandwidths. For comparison, Figure 6.5(d) shows the same frame rendered
using the full model of the scene.

The results are similar to those of the statue garden scene. Ground tiles are sent
first, and image-based impostors are sent at low bandwidths. Because of the vastly
increased complexity of some of the objects, compared to the garden scene, and
the lack of low-cost LODs for them, image-based impostors are visible even at
100000 bytes/sec. For example, the distant trees in Figure 6.5(c) are rendered
with image-based impostors.

Figure 6.6 plots the walkthrough quality during the first 30 seconds of the walk-
through. The plots show that quality is close to 100 percent throughout the 100000
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Figure 6.6: Walkthrough quality over time - terrain scene

bytes/sec walkthrough. At 20000 bytes/sec, walkthrough quality starts at 30 per-
cent, and rises slowly to over 80 percent, as more representations arrive. At 2000
bytes/sec, most of the bandwidth is consumed by ground tiles, and only a few
low quality impostors start arriving around 10 seconds into the walkthrough —
enough to raise quality to around 20 percent.

At the end of the walkthrough (graph not shown here), the 100000 bytes/sec walk-
through remains at close to 100 percent, the 20000 byte/sec walkthrough fluctu-
ates between 40 percent and 100 percent, while the 2000 bytes/sec walkthrough
remains around the 20 percent line.

These results are inferior to those we got with the simpler statue garden, but not by
much, showing that this streaming strategy works well even with complex objects.
Even at 2000 bytes/sec, the user is still provides with a walkthrough experience,
even if a low quality one.

Note that 2000 bytes per second is even less than the bandwidth available with to-
day’s standard modems (which is about 5000 bytes per second), and recall that our
current implementation transmits object representations without any compression,
using 4 bytes per pixel for image based impostors, and floating point coordinates
for geometry. Thus, our results indicate that with compression, a good quality
remote walkthrough of our test scenes could have been obtained even through a
standard modem connection.
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Chapter 7

Summary

We have described a new and general 3D scene streaming approach that allows
users to walk through a large scene residing on a remote server, without having to
wait for the entire scene to be downloaded to the client computer. Our approach
employs an online optimization algorithm, which schedules object transmissions
based on the integral of added benefit along a predicted viewpoint path. We have
demonstrated that the approach adjusts well to different connection bandwidths.

There are a lot of ways to extend this work. The implementation is limited, and
doesn’t even include all the ideas mentioned in this thesis, such as handling mul-
tiple texture levels. Progressive meshes, that fit nicely into our concept of added
benefit, are yet to be incorporated, either. Other fairly straightforward improve-
ments would include add occlusion culling, in order to more effectively handle
indoor scenes, and adding hierarchical image-based impostors [23], thus allowing
efficient transmission of distant clusters of objects.

Other interesting topics for further study include investigating better motion pre-
diction heuristics for the viewpoint path, developing a more sophisticated online
optimization algorithm, incorporation of other representations (such as relief tex-
tures [19]) into our optimization framework, incorporation of state-of-the-art com-
pression techniques for more efficient transmission of object models, and further
study of appropriate benefit measures and quality perception by users.

Also of interest is unloading some of the optimization work onto the client, by
transmitting limited amounts of information that would allow the client to make
the decisions that the server is currently making. Currently the server isn’t using
the full geometric data to calculate the benefit, but only information such as the
bounding box or number of faces. Even transmitting this data to the client would
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take time, so the server would still need to decide what to send, but work could be
distributed better, which would make the system more scalable.
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Appendix A

Test System Structure

Here is a high level description of the system that we implemented for this work.
The system contains several modules: the server database, the optimization mod-
ule, the communication system, the client database, and the rendering / user inter-
face.

A.1 The Server Database

The server database keeps the entire scene in the server’s memory. It can read
several different object formats, such as VRML, ASE, JPEG (for textures) and
SKY (a textual description of the sky dome), as well as meta-objects, that read
or create other objects, such as a populator, which creates instances of an object
over an area, with variations in size and orientation, and the ground, which creates
ground tile objects. When an object is read from the disk into the database, all its
LODs are read. Objects can reference each other by name (such as a populator
and the object it replicates, or an object and its textures).

Each object in the database can estimate its size in bytes (how much data needs
to be sent for it). Geometric objects (as opposed to textures, for example) can
also return their bounding box as well as create an OpenGL-style representation
of themselves, for the rendering module. Note that rendering is used not only on
the client side, but also for creating image based impostors on the server side.
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A.2 The Optimization Module

There is a layer on top the objects in the database, that provides information about
them that is helpful for the optimization. Each geometric object in the scene is
associated with representation objects (which may be generated when queried,
as in the case of image-based impostors). A representation object can return an
accuracy measure for given viewing parameters, and is also able render itself (via
the rendering module).

A quadtree provides the means of finding all the objects within the area defined
by the 2D projection of the view frustum when extended over time, as described
in chapters 5 and 6.

Motion prediction is done using a motion predictor class, that keeps the user’s past
viewing parameters, and can be queried for an estimate about a future time.

The optimization itself, as described in chapters 5 and 6, is done using an op-
timizer class, which uses the “current” (estimated by the motion predictor) type
of movement to select one of several integration strategies (for different kinds of
movements), queries objects from the quadtree for the area relevant to that strat-
egy, and gets representation for them. The benefit integral is calculated for each
representation. If a representation has associated objects (such as textures for an
LOD, or the ground definition for ground tiles), they are added to the list of ob-
jects to be considered, with the benefit of the “parent” object. The “parent” object
is deferred for a future optimization cycle. Once all representation benefits are
calculated, the representations are sorted by benefit/cost.

Note that for calculating the “current benefit” (on the client side), the optimization
module provides some functionality that is similar to the client database function-
ality (described later).

A.3 Communication

Each representation object is capable of sending itself over a stream. The rep-
resentation class implements whatever is necessary for sending it in a form that
a client can use. For example, the Impostor class (implementing image-based
impostors) holds only parameters (impostor billboard definition) during the opti-
mization process, and only renders itself before being sent.
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Communication is only simulated in our implementation. The client requests as
many bytes as its bandwidth parameter and the time since the last request dictates,
and once the size requirement for the representation in the queue is fulfilled, it it
written to a stream, and the client reads it. And leftover time is applied to the next
representations in the queue. The client can receive several small representations
at once.

A.4 The Client Database

When the client accepts a representation, it associates it with an object. The object
is stored in a quadtree (the same class used on the server side). The representa-
tions associated with the object are kept in a representation collection. This is a
class that can be queried for the “best” representation from a particular POV. It
allows an efficient decision on what representation to use for rendering. For ex-
ample, assuming that the client has enough rendering power, an LOD collection
might simply discard any LODs but the most detailed. Each representation class
specifies what collection is associated with it. The default collection is a generic
collection, that simply collects all the representations, and chooses for display the
one with the highest benefit. When several collections exist (for different types
of representations), they are each queried, and the most beneficial representation
returned is selected.

A.5 Rendering / User Interaction

The rendering process work as follows: for each object within the view frustum
(as returned by the quadtree), the client database is queried for the most beneficial
representation to use in the particular frame. Each representation can provide a
low level 3D description of itself that can be fed into an object-oriented rendering
system, built on top of OpenGL.

User interaction is provided via Keyboard control. There are keys for moving for-
ward and back, and for rotating, and an “extra speed” (“run”) key – similarly to
pre-mouse-control games. The keystrokes can be saved to a file, to allow simulat-
ing the same walkthrough multiple times.
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